BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22926267)

  • 1. A flexible-protein molecular docking study of the binding of ruthenium complex compounds to PIM1, GSK-3β, and CDK2/Cyclin A protein kinases.
    Liu Y; Agrawal NJ; Radhakrishnan R
    J Mol Model; 2013 Jan; 19(1):371-82. PubMed ID: 22926267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based approaches to improve selectivity: CDK2-GSK3beta binding site analysis.
    Vulpetti A; Crivori P; Cameron A; Bertrand J; Brasca MG; D'Alessio R; Pevarello P
    J Chem Inf Model; 2005; 45(5):1282-90. PubMed ID: 16180905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of the inhibitory effects of ChEMBL474807 on the enzymes GSK-3β and CDK-2.
    Czeleń P; Szefler B
    J Mol Model; 2015 Apr; 21(4):74. PubMed ID: 25754137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of anticancer ruthenium half-sandwich complex bound to glycogen synthase kinase 3β.
    Atilla-Gokcumen GE; Di Costanzo L; Meggers E
    J Biol Inorg Chem; 2011 Jan; 16(1):45-50. PubMed ID: 20821241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: understanding the factors contributing to selectivity.
    Arfeen M; Patel R; Khan T; Bharatam PV
    J Biomol Struct Dyn; 2015; 33(12):2578-93. PubMed ID: 26209183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based design of benzo[e]isoindole-1,3-dione derivatives as selective GSK-3β inhibitors to activate Wnt/β-catenin pathway.
    Yue H; Lu F; Shen C; Quan JM
    Bioorg Chem; 2015 Aug; 61():21-7. PubMed ID: 26057861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3β (GSK-3β) phosphorylation inhibitors.
    Zhao P; Li Y; Gao G; Wang S; Yan Y; Zhan X; Liu Z; Mao Z; Chen S; Wang L
    Eur J Med Chem; 2014 Oct; 86():165-74. PubMed ID: 25151579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of BIS like and other ligands with the GSK-3β kinase: a combined docking and MM-PBSA study.
    Jena NR
    J Mol Model; 2012 Feb; 18(2):631-44. PubMed ID: 21559963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative binding modes of an inhibitor to two different kinases.
    De Moliner E; Brown NR; Johnson LN
    Eur J Biochem; 2003 Aug; 270(15):3174-81. PubMed ID: 12869192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural features underlying selective inhibition of GSK3β by dibromocantharelline: implications for rational drug design.
    Zhang N; Zhong R; Yan H; Jiang Y
    Chem Biol Drug Des; 2011 Mar; 77(3):199-205. PubMed ID: 21244636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors.
    Bertrand JA; Thieffine S; Vulpetti A; Cristiani C; Valsasina B; Knapp S; Kalisz HM; Flocco M
    J Mol Biol; 2003 Oct; 333(2):393-407. PubMed ID: 14529625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors.
    Tripathi SK; Muttineni R; Singh SK
    J Theor Biol; 2013 Oct; 334():87-100. PubMed ID: 23727278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Conformational Flexibility on Binding Free Energy Estimation between Kinases and Their Inhibitors.
    Araki M; Kamiya N; Sato M; Nakatsui M; Hirokawa T; Okuno Y
    J Chem Inf Model; 2016 Dec; 56(12):2445-2456. PubMed ID: 28024406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homology modeling and molecular dynamics study of GSK3/SHAGGY-like kinase.
    Xiao JF; Li ZS; Sun M; Zhang Y; Sun CC
    Comput Biol Chem; 2004 Jul; 28(3):179-88. PubMed ID: 15261148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific Conformational Dynamics and Expansion Underpin a Multi-Step Mechanism for Specific Binding of p27 with Cdk2/Cyclin A.
    Tsytlonok M; Hemmen K; Hamilton G; Kolimi N; Felekyan S; Seidel CAM; Tompa P; Sanabria H
    J Mol Biol; 2020 Apr; 432(9):2998-3017. PubMed ID: 32088186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the GSK-3beta binding affinity and selectivity against CDK-2 of 1-(4-aminofurazan-3yl)-5-dialkylaminomethyl-1H-[1,2,3] triazole-4-carboxylic acid derivatives.
    Pande V; Ramos MJ
    Bioorg Med Chem Lett; 2005 Dec; 15(23):5129-35. PubMed ID: 16213715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches.
    Li HL; Ma Y; Ma Y; Li Y; Chen XB; Dong WL; Wang RL
    Oncotarget; 2017 May; 8(20):33225-33240. PubMed ID: 28402259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Prediction of Complex Structure and Affinity for a Flexible Protein Receptor and Its Inhibitor.
    Bekker GJ; Kamiya N; Araki M; Fukuda I; Okuno Y; Nakamura H
    J Chem Theory Comput; 2017 Jun; 13(6):2389-2399. PubMed ID: 28482660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.
    Tian S; Sun H; Pan P; Li D; Zhen X; Li Y; Hou T
    J Chem Inf Model; 2014 Oct; 54(10):2664-79. PubMed ID: 25233367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-dependent kinase 2 complex.
    Verkhivker GM
    Proteins; 2005 Feb; 58(3):706-16. PubMed ID: 15609350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.