These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1205 related articles for article (PubMed ID: 22926292)
1. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Satterthwaite TD; Elliott MA; Gerraty RT; Ruparel K; Loughead J; Calkins ME; Eickhoff SB; Hakonarson H; Gur RC; Gur RE; Wolf DH Neuroimage; 2013 Jan; 64():240-56. PubMed ID: 22926292 [TBL] [Abstract][Full Text] [Related]
2. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Power JD; Mitra A; Laumann TO; Snyder AZ; Schlaggar BL; Petersen SE Neuroimage; 2014 Jan; 84():320-41. PubMed ID: 23994314 [TBL] [Abstract][Full Text] [Related]
3. Reduction of motion-related artifacts in resting state fMRI using aCompCor. Muschelli J; Nebel MB; Caffo BS; Barber AD; Pekar JJ; Mostofsky SH Neuroimage; 2014 Aug; 96():22-35. PubMed ID: 24657780 [TBL] [Abstract][Full Text] [Related]
4. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. Bright MG; Murphy K Neuroimage; 2013 Jan; 64(6):526-37. PubMed ID: 23006803 [TBL] [Abstract][Full Text] [Related]
5. Anticorrelated resting-state functional connectivity in awake rat brain. Liang Z; King J; Zhang N Neuroimage; 2012 Jan; 59(2):1190-9. PubMed ID: 21864689 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth. Satterthwaite TD; Wolf DH; Ruparel K; Erus G; Elliott MA; Eickhoff SB; Gennatas ED; Jackson C; Prabhakaran K; Smith A; Hakonarson H; Verma R; Davatzikos C; Gur RE; Gur RC Neuroimage; 2013 Dec; 83():45-57. PubMed ID: 23792981 [TBL] [Abstract][Full Text] [Related]
9. Global signal regression strengthens association between resting-state functional connectivity and behavior. Li J; Kong R; Liégeois R; Orban C; Tan Y; Sun N; Holmes AJ; Sabuncu MR; Ge T; Yeo BTT Neuroimage; 2019 Aug; 196():126-141. PubMed ID: 30974241 [TBL] [Abstract][Full Text] [Related]
10. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines. Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project. Burgess GC; Kandala S; Nolan D; Laumann TO; Power JD; Adeyemo B; Harms MP; Petersen SE; Barch DM Brain Connect; 2016 Nov; 6(9):669-680. PubMed ID: 27571276 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of denoising strategies for task-based functional connectivity: Equalizing residual motion artifacts between rest and cognitively demanding tasks. Mascali D; Moraschi M; DiNuzzo M; Tommasin S; Fratini M; Gili T; Wise RG; Mangia S; Macaluso E; Giove F Hum Brain Mapp; 2021 Apr; 42(6):1805-1828. PubMed ID: 33528884 [TBL] [Abstract][Full Text] [Related]
13. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Hallquist MN; Hwang K; Luna B Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457 [TBL] [Abstract][Full Text] [Related]
14. The efficacy of different preprocessing steps in reducing motion-related confounds in diffusion MRI connectomics. Oldham S; Arnatkevic Iūtė A; Smith RE; Tiego J; Bellgrove MA; Fornito A Neuroimage; 2020 Nov; 222():117252. PubMed ID: 32800991 [TBL] [Abstract][Full Text] [Related]
15. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
16. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Lanka P; Deshpande G Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966 [TBL] [Abstract][Full Text] [Related]
17. Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis. Liao R; McKeown MJ; Krolik JL Magn Reson Med; 2006 Jun; 55(6):1396-413. PubMed ID: 16676336 [TBL] [Abstract][Full Text] [Related]
18. Model for the correction of motion-induced phase errors in multishot diffusion-weighted-MRI of the head: are cardiac-motion-induced phase errors reproducible from beat-to-beat? O'Halloran RL; Holdsworth S; Aksoy M; Bammer R Magn Reson Med; 2012 Aug; 68(2):430-40. PubMed ID: 22213138 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data. Mahadevan AS; Tooley UA; Bertolero MA; Mackey AP; Bassett DS Neuroimage; 2021 Nov; 241():118408. PubMed ID: 34284108 [TBL] [Abstract][Full Text] [Related]
20. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data. James GA; Hazaroglu O; Bush KA Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]