BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22926428)

  • 1. Self-assembling peptide-enriched electrospun polycaprolactone scaffolds promote the h-osteoblast adhesion and modulate differentiation-associated gene expression.
    Danesin R; Brun P; Roso M; Delaunay F; Samouillan V; Brunelli K; Iucci G; Ghezzo F; Modesti M; Castagliuolo I; Dettin M
    Bone; 2012 Nov; 51(5):851-9. PubMed ID: 22926428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering.
    Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetitive Arg-Gly-Asp peptide as a cell-stimulating agent on electrospun poly(ϵ-caprolactone) scaffold for tissue engineering.
    Chaisri P; Chingsungnoen A; Siri S
    Biotechnol J; 2013 Nov; 8(11):1323-31. PubMed ID: 24039086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun fibers modified with polydopamine for enhancing human mesenchymal stem cell culture.
    Yang DH; Lee NY
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38729192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering.
    Guo Z; Xu J; Ding S; Li H; Zhou C; Li L
    J Biomater Sci Polym Ed; 2015; 26(15):989-1001. PubMed ID: 26123758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides.
    Maleki M; Natalello A; Pugliese R; Gelain F
    Acta Biomater; 2017 Mar; 51():268-278. PubMed ID: 28093364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers.
    Alvarez Perez MA; Guarino V; Cirillo V; Ambrosio L
    J Biomed Mater Res A; 2012 Nov; 100(11):3008-19. PubMed ID: 22700476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun scaffolds of self-assembling peptides with poly(ethylene oxide) for bone tissue engineering.
    Brun P; Ghezzo F; Roso M; Danesin R; Palù G; Bagno A; Modesti M; Castagliuolo I; Dettin M
    Acta Biomater; 2011 Jun; 7(6):2526-32. PubMed ID: 21345384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.
    Horii A; Wang X; Gelain F; Zhang S
    PLoS One; 2007 Feb; 2(2):e190. PubMed ID: 17285144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S; Çakmak AS; Gümüşderelioğlu M
    Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronic Acid and a Short Peptide Improve the Performance of a PCL Electrospun Fibrous Scaffold Designed for Bone Tissue Engineering Applications.
    Rachmiel D; Anconina I; Rudnick-Glick S; Halperin-Sternfeld M; Adler-Abramovich L; Sitt A
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33808946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification.
    Yildirim ED; Besunder R; Pappas D; Allen F; Güçeri S; Sun W
    Biofabrication; 2010 Mar; 2(1):014109. PubMed ID: 20811124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation.
    Kim BS; Park KE; Park WH; Lee J
    Biomed Mater; 2013 Aug; 8(4):045006. PubMed ID: 23735650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering.
    Xu T; Miszuk JM; Zhao Y; Sun H; Fong H
    Adv Healthc Mater; 2015 Oct; 4(15):2238-46. PubMed ID: 26332611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo.
    Shao Z; Zhang X; Pi Y; Wang X; Jia Z; Zhu J; Dai L; Chen W; Yin L; Chen H; Zhou C; Ao Y
    Biomaterials; 2012 Apr; 33(12):3375-87. PubMed ID: 22322196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun Scaffolds for Osteoblast Cells: Peptide-Induced Concentration-Dependent Improvements of Polycaprolactone.
    Dettin M; Zamuner A; Roso M; Gloria A; Iucci G; Messina GM; D'Amora U; Marletta G; Modesti M; Castagliuolo I; Brun P
    PLoS One; 2015; 10(9):e0137505. PubMed ID: 26361004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.