BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22926517)

  • 21. Oncogenic role of miR-483-3p at the IGF2/483 locus.
    Veronese A; Lupini L; Consiglio J; Visone R; Ferracin M; Fornari F; Zanesi N; Alder H; D'Elia G; Gramantieri L; Bolondi L; Lanza G; Querzoli P; Angioni A; Croce CM; Negrini M
    Cancer Res; 2010 Apr; 70(8):3140-9. PubMed ID: 20388800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations in microRNA processing genes in Wilms tumors derepress the
    Chen KS; Stroup EK; Budhipramono A; Rakheja D; Nichols-Vinueza D; Xu L; Stuart SH; Shukla AA; Fraire C; Mendell JT; Amatruda JF
    Genes Dev; 2018 Aug; 32(15-16):996-1007. PubMed ID: 30026293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Small Molecule Inhibition of miR-544 Biogenesis Disrupts Adaptive Responses to Hypoxia by Modulating ATM-mTOR Signaling.
    Haga CL; Velagapudi SP; Strivelli JR; Yang WY; Disney MD; Phinney DG
    ACS Chem Biol; 2015 Oct; 10(10):2267-76. PubMed ID: 26181590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pericyte-secreted IGF2 promotes breast cancer brain metastasis formation.
    Molnár K; Mészáros Á; Fazakas C; Kozma M; Győri F; Reisz Z; Tiszlavicz L; Farkas AE; Nyúl-Tóth Á; Haskó J; Krizbai IA; Wilhelm I
    Mol Oncol; 2020 Sep; 14(9):2040-2057. PubMed ID: 32534480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CD44
    Liu Y; Yu C; Wu Y; Sun X; Su Q; You C; Xin H
    J Cell Mol Med; 2017 Sep; 21(9):1979-1988. PubMed ID: 28523716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous screening of overexpressed genes in breast cancer for oncogenic drivers and tumor dependencies.
    Mofunanya A; Cameron ER; Braun CJ; Celeste F; Zhao X; Hemann MT; Scott KL; Li J; Powers S
    Sci Rep; 2024 Jun; 14(1):13227. PubMed ID: 38851782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IGF2 signaling and regulation in cancer.
    Brouwer-Visser J; Huang GS
    Cytokine Growth Factor Rev; 2015 Jun; 26(3):371-7. PubMed ID: 25704323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chronic Stress Facilitates Lung Tumorigenesis by Promoting Exocytosis of IGF2 in Lung Epithelial Cells.
    Jang HJ; Boo HJ; Lee HJ; Min HY; Lee HY
    Cancer Res; 2016 Nov; 76(22):6607-6619. PubMed ID: 27651310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Negative feedbacks in normal cell growth and their suppression in tumorigenesis.
    van Staveren WC; Detours V; Dumont JE; Maenhaut C
    Cell Cycle; 2006 Mar; 5(6):571-2. PubMed ID: 16582620
    [No Abstract]   [Full Text] [Related]  

  • 30. CmPn signaling networks in the tumorigenesis of breast cancer.
    Renteria M; Belkin O; Jang D; Aickareth J; Bhalli M; Zhang J
    Front Endocrinol (Lausanne); 2022; 13():1013892. PubMed ID: 36246881
    [No Abstract]   [Full Text] [Related]  

  • 31. MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development.
    Deng L; Shang L; Bai S; Chen J; He X; Martin-Trevino R; Chen S; Li XY; Meng X; Yu B; Wang X; Liu Y; McDermott SP; Ariazi AE; Ginestier C; Ibarra I; Ke J; Luther T; Clouthier SG; Xu L; Shan G; Song E; Yao H; Hannon GJ; Weiss SJ; Wicha MS; Liu S
    Cancer Res; 2014 Nov; 74(22):6648-60. PubMed ID: 25217527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion.
    Chen D; Sun Y; Yuan Y; Han Z; Zhang P; Zhang J; You MJ; Teruya-Feldstein J; Wang M; Gupta S; Hung MC; Liang H; Ma L
    PLoS Genet; 2014 Feb; 10(2):e1004177. PubMed ID: 24586203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vitro microRNA Expression Profile Alterations under CDK4/6 Therapy in Breast Cancer.
    Asberger J; Berner K; Bicker A; Metz M; Jäger M; Weiß D; Kreutz C; Juhasz-Böss I; Mayer S; Ge I; Erbes T
    Biomedicines; 2023 Oct; 11(10):. PubMed ID: 37893081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance?
    Belfiore A; Rapicavoli RV; Le Moli R; Lappano R; Morrione A; De Francesco EM; Vella V
    Biomedicines; 2023 Jan; 11(1):. PubMed ID: 36672737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoding Insulin-Like Growth Factor Signaling Pathway From a Non-coding RNAs Perspective: A Step Towards Precision Oncology in Breast Cancer.
    ZeinElAbdeen YA; AbdAlSeed A; Youness RA
    J Mammary Gland Biol Neoplasia; 2022 Mar; 27(1):79-99. PubMed ID: 35146629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Activation of Mesenchymal Stem Cells by Glioblastoma Microvesicles Alters Their Exosomal Secretion of miR-100-5p, miR-9-5p and let-7d-5p.
    Garnier D; Ratcliffe E; Briand J; Cartron PF; Oliver L; Vallette FM
    Biomedicines; 2022 Jan; 10(1):. PubMed ID: 35052791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of miR-100-5p and CDC25A in breast carcinoma cells.
    Li X; Ren Y; Liu D; Yu X; Chen K
    PeerJ; 2022; 9():e12263. PubMed ID: 35036112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1.
    Xie H; Xiao R; He Y; He L; Xie C; Chen J; Hong Y
    Oncol Lett; 2021 Dec; 22(6):816. PubMed ID: 34671430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MACE-Seq-based coding RNA and TrueQuant-based small RNA profile in breast cancer: tumor-suppressive miRNA-1275 identified as a novel marker.
    Majed SO; Mustafa SA
    BMC Cancer; 2021 Apr; 21(1):473. PubMed ID: 33910530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia.
    Ghafouri-Fard S; Abak A; Mohaqiq M; Shoorei H; Taheri M
    Front Cell Dev Biol; 2021; 9():634512. PubMed ID: 33768092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.