These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22926734)

  • 21. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.
    Minakata D; Crittenden J
    Environ Sci Technol; 2011 Apr; 45(8):3479-86. PubMed ID: 21410278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model.
    Yan JH; Zhu HM; Jiang XG; Chi Y; Cen KF
    J Hazard Mater; 2009 Mar; 162(2-3):646-51. PubMed ID: 18579296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A kinetic study of lipase-catalyzed reversible kinetic resolution involving verification at miniplant-scale.
    Berendsen WR; Gendrot G; Freund A; Reuss M
    Biotechnol Bioeng; 2006 Dec; 95(5):883-92. PubMed ID: 16937404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method.
    Oancea D; Stuparu A; Nita M; Puiu M; Raducan A
    Biophys Chem; 2008 Nov; 138(1-2):50-4. PubMed ID: 18814949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of the distributed activation energy model to the kinetic study of pyrolysis of the fresh water algae Chlorococcum humicola.
    Kirtania K; Bhattacharya S
    Bioresour Technol; 2012 Mar; 107():476-81. PubMed ID: 22230780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum chemical investigation of low-temperature intramolecular hydrogen transfer reactions of hydrocarbons.
    Pfaendtner J; Yu X; Broadbelt LJ
    J Phys Chem A; 2006 Sep; 110(37):10863-71. PubMed ID: 16970383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms.
    Gulaboski R; Lovrić M; Mirceski V; Bogeski I; Hoth M
    Biophys Chem; 2008 Dec; 138(3):130-7. PubMed ID: 18929440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ab initio study of acrylate polymerization reactions: methyl methacrylate and methyl acrylate propagation.
    Yu X; Pfaendtner J; Broadbelt LJ
    J Phys Chem A; 2008 Jul; 112(29):6772-82. PubMed ID: 18588274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant.
    Hoh CY; Cord-Ruwisch R
    Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simplified method for evaluating energy loss in vehicle collisions.
    Vangi D
    Accid Anal Prev; 2009 May; 41(3):633-41. PubMed ID: 19393816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic parameters estimation for ascorbic acid degradation in fruit nectar using the Partial Equivalent Isothermal Exposures (PEIE) method under non-isothermal continuous heating conditions.
    Vieira MC; Teixeira AA; Silva CL
    Biotechnol Prog; 2001; 17(1):175-81. PubMed ID: 11170496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Logistic distributed activation energy model--Part 1: Derivation and numerical parametric study.
    Cai J; Jin C; Yang S; Chen Y
    Bioresour Technol; 2011 Jan; 102(2):1556-61. PubMed ID: 20846853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of true kinetic parameters for reversible immobilized enzyme reactions.
    Ishikawa H; Tanaka T; Kurose K; Hikita H
    Biotechnol Bioeng; 1987 Jun; 29(8):924-33. PubMed ID: 18576541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements.
    Alberty RA
    J Theor Biol; 2008 Sep; 254(1):156-63. PubMed ID: 18582902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis.
    Cai J; Yang S; Li T
    Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.