These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 22926964)
1. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Shin GH; Veen M; Stahl U; Lang C Yeast; 2012 Sep; 29(9):371-83. PubMed ID: 22926964 [TBL] [Abstract][Full Text] [Related]
2. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Veen M; Stahl U; Lang C FEMS Yeast Res; 2003 Oct; 4(1):87-95. PubMed ID: 14554200 [TBL] [Abstract][Full Text] [Related]
3. Cloning of a fatty acid synthase component FAS1 gene from Saccharomyces kluyveri and its functional complementation of S. cerevisiae fas1 mutant. Kajiwara S; Oura T; Shishido K Yeast; 2001 Oct; 18(14):1339-45. PubMed ID: 11571758 [TBL] [Abstract][Full Text] [Related]
4. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion. Desfougères T; Ferreira T; Bergès T; Régnacq M Biochem J; 2008 Jan; 409(1):299-309. PubMed ID: 17803462 [TBL] [Abstract][Full Text] [Related]
5. [Regulation role of sterol C-24 methyltransferase and sterol C-8 isomerase in the ergosterol biosynthesis of Saccharomyces cerevisiae]. Zhang Z; He X; Li W; Lu Y; Wang Z; Zhang B Wei Sheng Wu Xue Bao; 2009 Aug; 49(8):1063-8. PubMed ID: 19835168 [TBL] [Abstract][Full Text] [Related]
6. Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae. Pedroso N; Matias AC; Cyrne L; Antunes F; Borges C; Malhó R; de Almeida RF; Herrero E; Marinho HS Free Radic Biol Med; 2009 Jan; 46(2):289-98. PubMed ID: 19027845 [TBL] [Abstract][Full Text] [Related]
7. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae. Ohto C; Muramatsu M; Obata S; Sakuradani E; Shimizu S Appl Microbiol Biotechnol; 2010 Jul; 87(4):1327-34. PubMed ID: 20393702 [TBL] [Abstract][Full Text] [Related]
9. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering. Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560 [TBL] [Abstract][Full Text] [Related]
10. Effect of 5,7-unsaturated sterols on ethanol tolerance in Saccharomyces cerevisiae. Novotný C; Flieger M; Panos J; Karst F Biotechnol Appl Biochem; 1992 Jun; 15(3):314-20. PubMed ID: 1388822 [TBL] [Abstract][Full Text] [Related]
11. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm]. Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851 [TBL] [Abstract][Full Text] [Related]
12. Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains. Zara G; Bardi L; Belviso S; Farris GA; Zara S; Budroni M J Appl Microbiol; 2008 Mar; 104(3):906-14. PubMed ID: 17961155 [TBL] [Abstract][Full Text] [Related]
13. Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. Mantzouridou F; Tsimidou MZ FEMS Yeast Res; 2010 Sep; 10(6):699-707. PubMed ID: 20550581 [TBL] [Abstract][Full Text] [Related]
14. Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. Matias AC; Pedroso N; Teodoro N; Marinho HS; Antunes F; Nogueira JM; Herrero E; Cyrne L Free Radic Biol Med; 2007 Nov; 43(10):1458-65. PubMed ID: 17936191 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Runguphan W; Keasling JD Metab Eng; 2014 Jan; 21():103-13. PubMed ID: 23899824 [TBL] [Abstract][Full Text] [Related]
16. [Effect of over-expression of sterol C-22 desaturase on ergosterol production in yeast strains]. Cai PL; He XP; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):274-9. PubMed ID: 17552234 [TBL] [Abstract][Full Text] [Related]
17. The acetyl-CoA synthetase gene ACS2 of the yeast Saccharomyces cerevisiae is coregulated with structural genes of fatty acid biosynthesis by the transcriptional activators Ino2p and Ino4p. Hiesinger M; Wagner C; Schüller HJ FEBS Lett; 1997 Sep; 415(1):16-20. PubMed ID: 9326360 [TBL] [Abstract][Full Text] [Related]
18. Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Li X; Guo D; Cheng Y; Zhu F; Deng Z; Liu T Biotechnol Bioeng; 2014 Sep; 111(9):1841-52. PubMed ID: 24752690 [TBL] [Abstract][Full Text] [Related]
19. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Endo A; Nakamura T; Shima J FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341 [TBL] [Abstract][Full Text] [Related]
20. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. Casey WM; Keesler GA; Parks LW J Bacteriol; 1992 Nov; 174(22):7283-8. PubMed ID: 1429452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]