These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 22927103)
1. Construction of microenvironment onto titanium substrates to regulate the osteoblastic differentiation of bone marrow stromal cells in vitro and osteogenesis in vivo. Lai M; Cai K; Hu Y; Zhang Y; Li L; Luo Z; Hou Y; Li J; Ding X; Chen X J Biomed Mater Res A; 2013 Mar; 101(3):653-66. PubMed ID: 22927103 [TBL] [Abstract][Full Text] [Related]
2. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells. Cai K; Lai M; Yang W; Hu R; Xin R; Liu Q; Sung KL Acta Biomater; 2010 Jun; 6(6):2314-21. PubMed ID: 19963080 [TBL] [Abstract][Full Text] [Related]
3. Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces. Hu Y; Cai K; Luo Z; Zhang Y; Li L; Lai M; Hou Y; Huang Y; Li J; Ding X; Zhang B; Sung KL Biomaterials; 2012 May; 33(13):3515-28. PubMed ID: 22333987 [TBL] [Abstract][Full Text] [Related]
4. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin. Kodama T; Goto T; Miyazaki T; Takahashi T Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269 [TBL] [Abstract][Full Text] [Related]
5. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685 [TBL] [Abstract][Full Text] [Related]
6. The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells. Nishio K; Neo M; Akiyama H; Nishiguchi S; Kim HM; Kokubo T; Nakamura T J Biomed Mater Res; 2000 Dec; 52(4):652-61. PubMed ID: 11033547 [TBL] [Abstract][Full Text] [Related]
7. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Dekker RJ; de Bruijn JD; Stigter M; Barrere F; Layrolle P; van Blitterswijk CA Biomaterials; 2005 Sep; 26(25):5231-9. PubMed ID: 15792550 [TBL] [Abstract][Full Text] [Related]
8. TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Hu Y; Cai K; Luo Z; Xu D; Xie D; Huang Y; Yang W; Liu P Acta Biomater; 2012 Jan; 8(1):439-48. PubMed ID: 22040682 [TBL] [Abstract][Full Text] [Related]
9. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure. Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974 [TBL] [Abstract][Full Text] [Related]
10. Surface engineering of titanium alloy substrates with multilayered biomimetic hierarchical films to regulate the growth behaviors of osteoblasts. Yang W; Xi X; Si Y; Huang S; Wang J; Cai K Acta Biomater; 2014 Oct; 10(10):4525-36. PubMed ID: 24905934 [TBL] [Abstract][Full Text] [Related]
11. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces. Wang CY; Zhao BH; Ai HJ; Wang YW Biomed Mater; 2008 Mar; 3(1):015004. PubMed ID: 18458491 [TBL] [Abstract][Full Text] [Related]
12. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces. Park JW; Kim YJ; Jang JH Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830 [TBL] [Abstract][Full Text] [Related]
13. The enhanced modulation of key bone matrix components by modified Titanium implant surfaces. Khan MR; Donos N; Salih V; Brett PM Bone; 2012 Jan; 50(1):1-8. PubMed ID: 21906701 [TBL] [Abstract][Full Text] [Related]
14. Trabecular bone response to titanium implants with a thin carbonate-containing apatite coating applied using the molecular precursor method. Hayakawa T; Takahashi K; Yoshinari M; Okada H; Yamamoto H; Sato M; Nemoto K Int J Oral Maxillofac Implants; 2006; 21(6):851-8. PubMed ID: 17190294 [TBL] [Abstract][Full Text] [Related]
15. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Cooper LF; Zhou Y; Takebe J; Guo J; Abron A; Holmén A; Ellingsen JE Biomaterials; 2006 Feb; 27(6):926-36. PubMed ID: 16112191 [TBL] [Abstract][Full Text] [Related]
16. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO₂ hybrid materials synthesized by sol-gel route: in vitro evaluation. Catauro M; Bollino F; Papale F; Mozetic P; Rainer A; Trombetta M Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():395-401. PubMed ID: 25491844 [TBL] [Abstract][Full Text] [Related]
18. The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium. van den Dolder J; Jansen JA J Biomed Mater Res A; 2007 Dec; 83(3):712-9. PubMed ID: 17559125 [TBL] [Abstract][Full Text] [Related]
19. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets. Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025 [TBL] [Abstract][Full Text] [Related]
20. Calcium-incorporated titanium surfaces influence the osteogenic differentiation of human mesenchymal stem cells. Sawada R; Kono K; Isama K; Haishima Y; Matsuoka A J Biomed Mater Res A; 2013 Sep; 101(9):2573-85. PubMed ID: 23401369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]