BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 22927375)

  • 1. Near-atomic resolution structural model of the yeast 26S proteasome.
    Beck F; Unverdorben P; Bohn S; Schweitzer A; Pfeifer G; Sakata E; Nickell S; Plitzko JM; Villa E; Baumeister W; Förster F
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14870-5. PubMed ID: 22927375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base-CP proteasome can serve as a platform for stepwise lid formation.
    Yu Z; Livnat-Levanon N; Kleifeld O; Mansour W; Nakasone MA; Castaneda CA; Dixon EK; Fushman D; Reis N; Pick E; Glickman MH
    Biosci Rep; 2015 Jan; 35(3):. PubMed ID: 26182356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of yeast Rpn9: insights into proteasome lid assembly.
    Hu Y; Wu Y; Li Q; Zhang W; Jin C
    J Biol Chem; 2015 Mar; 290(11):6878-89. PubMed ID: 25631053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11.
    Pathare GR; Nagy I; Śledź P; Anderson DJ; Zhou HJ; Pardon E; Steyaert J; Förster F; Bracher A; Baumeister W
    Proc Natl Acad Sci U S A; 2014 Feb; 111(8):2984-9. PubMed ID: 24516147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach.
    Lasker K; Förster F; Bohn S; Walzthoeni T; Villa E; Unverdorben P; Beck F; Aebersold R; Sali A; Baumeister W
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1380-7. PubMed ID: 22307589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation.
    Worden EJ; Padovani C; Martin A
    Nat Struct Mol Biol; 2014 Mar; 21(3):220-7. PubMed ID: 24463465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of an endogenous yeast 26S proteasome reveals two major conformational states.
    Luan B; Huang X; Wu J; Mei Z; Wang Y; Xue X; Yan C; Wang J; Finley DJ; Shi Y; Wang F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2642-7. PubMed ID: 26929360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome.
    Bashore C; Dambacher CM; Goodall EA; Matyskiela ME; Lander GC; Martin A
    Nat Struct Mol Biol; 2015 Sep; 22(9):712-9. PubMed ID: 26301997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of the interaction of Ubp6 with the 26S proteasome.
    Aufderheide A; Beck F; Stengel F; Hartwig M; Schweitzer A; Pfeifer G; Goldberg AL; Sakata E; Baumeister W; Förster F
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8626-31. PubMed ID: 26130806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational switching of the 26S proteasome enables substrate degradation.
    Matyskiela ME; Lander GC; Martin A
    Nat Struct Mol Biol; 2013 Jul; 20(7):781-8. PubMed ID: 23770819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition.
    Dambacher CM; Worden EJ; Herzik MA; Martin A; Lander GC
    Elife; 2016 Jan; 5():e13027. PubMed ID: 26744777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrity of the Saccharomyces cerevisiae Rpn11 protein is critical for formation of proteasome storage granules (PSG) and survival in stationary phase.
    Saunier R; Esposito M; Dassa EP; Delahodde A
    PLoS One; 2013; 8(8):e70357. PubMed ID: 23936414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
    Worden EJ; Dong KC; Martin A
    Mol Cell; 2017 Sep; 67(5):799-811.e8. PubMed ID: 28844860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain.
    Rinaldi T; Pick E; Gambadoro A; Zilli S; Maytal-Kivity V; Frontali L; Glickman MH
    Biochem J; 2004 Jul; 381(Pt 1):275-85. PubMed ID: 15018611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of the N-terminal domain of proteasome lid subunit Rpn5.
    Zhang W; Zhao C; Hu Y; Jin C
    Biochem Biophys Res Commun; 2018 Sep; 504(1):225-230. PubMed ID: 30177392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx.
    Ding Z; Fu Z; Xu C; Wang Y; Wang Y; Li J; Kong L; Chen J; Li N; Zhang R; Cong Y
    Cell Res; 2017 Mar; 27(3):373-385. PubMed ID: 28106073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the functional cycle of the ATPase module of the 26S proteasome.
    Wehmer M; Rudack T; Beck F; Aufderheide A; Pfeifer G; Plitzko JM; Förster F; Schulten K; Baumeister W; Sakata E
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1305-1310. PubMed ID: 28115689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the human 26S proteasome at a resolution of 3.9 Å.
    Schweitzer A; Aufderheide A; Rudack T; Beck F; Pfeifer G; Plitzko JM; Sakata E; Schulten K; Förster F; Baumeister W
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7816-21. PubMed ID: 27342858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR
    Zhang W; Zhao C; Hu Y; Jin C
    Biomol NMR Assign; 2019 Apr; 13(1):1-4. PubMed ID: 30229448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function.
    Rinaldi T; Hofmann L; Gambadoro A; Cossard R; Livnat-Levanon N; Glickman MH; Frontali L; Delahodde A
    Mol Biol Cell; 2008 Mar; 19(3):1022-31. PubMed ID: 18172023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.