These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22927389)

  • 1. Computational design of genomic transcriptional networks with adaptation to varying environments.
    Carrera J; Elena SF; Jaramillo A
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15277-82. PubMed ID: 22927389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated design of bacterial genome sequences.
    Carrera J; Jaramillo A
    BMC Syst Biol; 2013 Oct; 7():108. PubMed ID: 24160255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based redesign of global transcription regulation.
    Carrera J; Rodrigo G; Jaramillo A
    Nucleic Acids Res; 2009 Apr; 37(5):e38. PubMed ID: 19188257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E. coli.
    Balaji S; Babu MM; Aravind L
    J Mol Biol; 2007 Sep; 372(4):1108-1122. PubMed ID: 17706247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus.
    Rodionov DA; Novichkov PS; Stavrovskaya ED; Rodionova IA; Li X; Kazanov MD; Ravcheev DA; Gerasimova AV; Kazakov AE; Kovaleva GY; Permina EA; Laikova ON; Overbeek R; Romine MF; Fredrickson JK; Arkin AP; Dubchak I; Osterman AL; Gelfand MS
    BMC Genomics; 2011 Jun; 12 Suppl 1(Suppl 1):S3. PubMed ID: 21810205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional states of the genome-scale Escherichia coli transcriptional regulatory system.
    Gianchandani EP; Joyce AR; Palsson BØ; Papin JA
    PLoS Comput Biol; 2009 Jun; 5(6):e1000403. PubMed ID: 19503608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the commonalities and differences in genomic organizations across closely related bacteria from an energy perspective.
    Ma Q; Chen X; Liu C; Mao X; Zhang H; Ji F; Wu C; Xu Y
    Sci China Life Sci; 2014 Nov; 57(11):1121-30. PubMed ID: 25234108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach.
    Freyre-González JA; Alonso-Pavón JA; Treviño-Quintanilla LG; Collado-Vides J
    Genome Biol; 2008 Oct; 9(10):R154. PubMed ID: 18954463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Escherichia coli transcriptome mostly consists of independently regulated modules.
    Sastry AV; Gao Y; Szubin R; Hefner Y; Xu S; Kim D; Choudhary KS; Yang L; King ZA; Palsson BO
    Nat Commun; 2019 Dec; 10(1):5536. PubMed ID: 31797920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states.
    Barrett CL; Herring CD; Reed JL; Palsson BO
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19103-8. PubMed ID: 16357206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary dynamics of prokaryotic transcriptional regulatory networks.
    Madan Babu M; Teichmann SA; Aravind L
    J Mol Biol; 2006 Apr; 358(2):614-33. PubMed ID: 16530225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference and Evolutionary Analysis of Genome-Scale Regulatory Networks in Large Phylogenies.
    Koch C; Konieczka J; Delorey T; Lyons A; Socha A; Davis K; Knaack SA; Thompson D; O'Shea EK; Regev A; Roy S
    Cell Syst; 2017 May; 4(5):543-558.e8. PubMed ID: 28544882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes.
    Sotiropoulos V; Kaznessis YN
    BMC Syst Biol; 2007 Jan; 1():7. PubMed ID: 17408514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of Escherichia coli transcriptional regulatory networks via regulon-based associations.
    Zare H; Sangurdekar D; Srivastava P; Kaveh M; Khodursky A
    BMC Syst Biol; 2009 Apr; 3():39. PubMed ID: 19366454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomewide Stabilization of mRNA during a "Feast-to-Famine" Growth Transition in Escherichia coli.
    Morin M; Enjalbert B; Ropers D; Girbal L; Cocaign-Bousquet M
    mSphere; 2020 May; 5(3):. PubMed ID: 32434841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation.
    Junier I; Rivoire O
    PLoS One; 2016; 11(5):e0155740. PubMed ID: 27195891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elementary network reconstruction: a framework for the analysis of regulatory networks in biological systems.
    Dharmadi Y; Gonzalez R
    J Theor Biol; 2010 Apr; 263(4):499-509. PubMed ID: 20004670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the contributions of topological features to transcriptional regulatory network robustness.
    Zamal FA; Ruths D
    BMC Bioinformatics; 2012 Nov; 13():318. PubMed ID: 23194062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of translational coupling in robustness of bacterial chemotaxis pathway.
    Løvdok L; Bentele K; Vladimirov N; Müller A; Pop FS; Lebiedz D; Kollmann M; Sourjik V
    PLoS Biol; 2009 Aug; 7(8):e1000171. PubMed ID: 19688030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.