These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 22927493)
1. Effects of plant-community composition on the vectorial capacity and fitness of the malaria mosquito Anopheles gambiae. Stone CM; Jackson BT; Foster WA Am J Trop Med Hyg; 2012 Oct; 87(4):727-36. PubMed ID: 22927493 [TBL] [Abstract][Full Text] [Related]
2. Effects of available sugar on the reproductive fitness and vectorial capacity of the malaria vector Anopheles gambiae (Diptera: Culicidae). Gary RE; Foster WA J Med Entomol; 2001 Jan; 38(1):22-8. PubMed ID: 11268686 [TBL] [Abstract][Full Text] [Related]
3. Anopheles gambiae feeding and survival on honeydew and extra-floral nectar of peridomestic plants. Gary RE; Foster WA Med Vet Entomol; 2004 Jun; 18(2):102-7. PubMed ID: 15189234 [TBL] [Abstract][Full Text] [Related]
4. Response of Anopheles gambiae s.l. (Diptera: Culicidae) to larval habitat age in western Kenya highlands. Munga S; Vulule J; Kweka EJ Parasit Vectors; 2013 Jan; 6():13. PubMed ID: 23324330 [TBL] [Abstract][Full Text] [Related]
5. Alteration of plant species assemblages can decrease the transmission potential of malaria mosquitoes. Ebrahimi B; Jackson BT; Guseman JL; Przybylowicz CM; Stone CM; Foster WA J Appl Ecol; 2018 Mar; 55(2):841-851. PubMed ID: 29551835 [TBL] [Abstract][Full Text] [Related]
6. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission. Zhu L; Qualls WA; Marshall JM; Arheart KL; DeAngelis DL; McManus JW; Traore SF; Doumbia S; Schlein Y; Müller GC; Beier JC Malar J; 2015 Feb; 14():59. PubMed ID: 25652678 [TBL] [Abstract][Full Text] [Related]
7. Frequent blood-feeding and restrictive sugar-feeding behavior enhance the malaria vector potential of Anopheles gambiae s.l. and An. funestus (Diptera:Culicidae) in western Kenya. Beier JC J Med Entomol; 1996 Jul; 33(4):613-8. PubMed ID: 8699456 [TBL] [Abstract][Full Text] [Related]
8. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Kelly-Hope LA; Hemingway J; McKenzie FE Malar J; 2009 Nov; 8():268. PubMed ID: 19941637 [TBL] [Abstract][Full Text] [Related]
9. Early biting of the Anopheles gambiae s.s. and its challenges to vector control using insecticide treated nets in western Kenya highlands. Wamae PM; Githeko AK; Otieno GO; Kabiru EW; Duombia SO Acta Trop; 2015 Oct; 150():136-42. PubMed ID: 26209103 [TBL] [Abstract][Full Text] [Related]
10. Ecological succession and its impact on malaria vectors and their predators in borrow pits in western Ethiopia. Kiszewski AE; Teffera Z; Wondafrash M; Ravesi M; Pollack RJ J Vector Ecol; 2014 Dec; 39(2):414-23. PubMed ID: 25424271 [TBL] [Abstract][Full Text] [Related]
11. MalariaSphere: a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Knols BG; Njiru BN; Mathenge EM; Mukabana WR; Beier JC; Killeen GF Malar J; 2002 Dec; 1():19. PubMed ID: 12537599 [TBL] [Abstract][Full Text] [Related]
12. [Malaria transmission in 1999 in the rice field area of the Kou Valley (Bama), (Burkina Faso)]. Baldet T; Diabaté A; Guiguemdé TR Sante; 2003; 13(1):55-60. PubMed ID: 12925325 [TBL] [Abstract][Full Text] [Related]
13. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. Fernandes L; Briegel H J Vector Ecol; 2005 Jun; 30(1):11-26. PubMed ID: 16007951 [TBL] [Abstract][Full Text] [Related]
14. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae. Stone CM; Jackson BT; Foster WA Malar J; 2012 Jan; 11():3. PubMed ID: 22217265 [TBL] [Abstract][Full Text] [Related]
15. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Müller GC; Beier JC; Traore SF; Toure MB; Traore MM; Bah S; Doumbia S; Schlein Y Malar J; 2010 Sep; 9():262. PubMed ID: 20854666 [TBL] [Abstract][Full Text] [Related]
16. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Impoinvil DE; Kongere JO; Foster WA; Njiru BN; Killeen GF; Githure JI; Beier JC; Hassanali A; Knols BG Med Vet Entomol; 2004 Jun; 18(2):108-15. PubMed ID: 15189235 [TBL] [Abstract][Full Text] [Related]
17. Behaviour and population dynamics of the major anopheline vectors in a malaria endemic area in southern Nigeria. Oyewole IO; Awolola TS; Ibidapo CA; Oduola AO; Okwa OO; Obansa JA J Vector Borne Dis; 2007 Mar; 44(1):56-64. PubMed ID: 17378218 [TBL] [Abstract][Full Text] [Related]
18. Surveillance of malaria vector population density and biting behaviour in western Kenya. Ototo EN; Mbugi JP; Wanjala CL; Zhou G; Githeko AK; Yan G Malar J; 2015 Jun; 14():244. PubMed ID: 26082138 [TBL] [Abstract][Full Text] [Related]
19. The fitness of African malaria vectors in the presence and limitation of host behaviour. Lyimo IN; Haydon DT; Mbina KF; Daraja AA; Mbehela EM; Reeve R; Ferguson HM Malar J; 2012 Dec; 11():425. PubMed ID: 23253167 [TBL] [Abstract][Full Text] [Related]
20. Anopheles gambiae exploits the treehole ecosystem in western Kenya: a new urban malaria risk? Omlin FX; Carlson JC; Ogbunugafor CB; Hassanali A Am J Trop Med Hyg; 2007 Dec; 77(6 Suppl):264-9. PubMed ID: 18165501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]