These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22927706)

  • 21. Covalent Biofunctionalization of the Inner Surfaces of a Hollow-Fiber Capillary Bundle Using Packed-Bed Plasma Ion Implantation.
    Kosobrodova E; Kondyurin A; Solodko V; Weiss AS; McKenzie DR; Bilek MMM
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32163-32174. PubMed ID: 32531163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of individual fibers in a submerged hollow fiber bundle.
    Yeo A; Fane AG
    Water Sci Technol; 2005; 51(6-7):165-72. PubMed ID: 16003975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 72-Hour in vivo evaluation of nitric oxide generating artificial lung gas exchange fibers in sheep.
    Lai A; Demarest CT; Do-Nguyen CC; Ukita R; Skoog DJ; Carleton NM; Amoako KA; Montoya PJ; Cook KE
    Acta Biomater; 2019 May; 90():122-131. PubMed ID: 30953800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Discussion on the Interpretation of the Darcy Equation in Case of Open-Cell Metal Foam Based on Numerical Simulations.
    De Schampheleire S; De Kerpel K; Ameel B; De Jaeger P; Bagci O; De Paepe M
    Materials (Basel); 2016 May; 9(6):. PubMed ID: 28773532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved computational fluid dynamic simulations of blood flow in membrane oxygenators from X-ray imaging.
    Jones CC; McDonough JM; Capasso P; Wang D; Rosenstein KS; Zwischenberger JB
    Ann Biomed Eng; 2013 Oct; 41(10):2088-98. PubMed ID: 23673653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a novel polyimide hollow fiber for an intravascular oxygenator.
    Kawakami H; Mori Y; Takagi J; Nagaoka S; Kanamori T; Shinbo T; Kubota S
    ASAIO J; 1997; 43(5):M490-4. PubMed ID: 9360091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing blood oxygenators.
    Wickramasinghe SR; Goerke AR; Garcia JD; Han B
    Ann N Y Acad Sci; 2003 Mar; 984():502-14. PubMed ID: 12783841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a membrane oxygenator for ECMO using a novel fine silicone hollow fiber.
    Funakubo A; Higami T; Sakuma I; Fukui Y; Kawamura T; Sato K; Sueoka A; Nosé Y
    ASAIO J; 1996; 42(5):M837-40. PubMed ID: 8945001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fiber Bundle Design for an Integrated Wearable Artificial Lung.
    Madhani SP; Frankowski BJ; Federspiel WJ
    ASAIO J; 2017; 63(5):631-636. PubMed ID: 28187049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zeta potential of hollow fiber dialysis membranes and its effects on hydrogen phosphate ion permeability.
    Suzuki Y; Kanamori T; Sakai K
    ASAIO J; 1993; 39(3):M301-4. PubMed ID: 8268547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance.
    Hirano A; Yamamoto K; Matsuda M; Ogawa T; Yakushiji T; Miyasaka T; Sakai K
    Ther Apher Dial; 2011 Feb; 15(1):66-74. PubMed ID: 21272255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effects of PEI Hollow Fiber Substrate Characteristics on PDMS/PEI Hollow Fiber Membranes for CO
    Li G; Kujawski W; Knozowska K; Kujawa J
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33466687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimate of gas transfer rates of an intravascular membrane oxygenator.
    Kanamori T; Niwa M; Kawakami H; Mori Y; Nagaoka S; Haraya K; Shinbo T
    ASAIO J; 2000; 46(5):612-9. PubMed ID: 11016518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance Comparison of Alternative Hollow-Fiber Modules for Hemodialysis by Means of a CFD-Based Model.
    Cancilla N; Gurreri L; Marotta G; Ciofalo M; Cipollina A; Tamburini A; Micale G
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.
    Hormes M; Borchardt R; Mager I; Rode TS; Behr M; Steinseifer U
    Int J Artif Organs; 2011 Mar; 34(3):317-25. PubMed ID: 21462147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive extraction of penicillin G in hollow-fiber and hollow-fiber fabric modules.
    Yang C; Cussler EL
    Biotechnol Bioeng; 2000 Jul; 69(1):66-73. PubMed ID: 10820332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Packing Nonuniformity at the Fiber Bundle-Case Interface on Performance of Hollow Fiber Membrane Gas Separation Modules.
    Sun L; Panagakos G; Lipscomb G
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study.
    Yang B; Yang T; Xu Z; Liu H; Shi W; Yang X
    R Soc Open Sci; 2018 Feb; 5(2):172109. PubMed ID: 29515904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting membrane oxygenator pressure drop using computational fluid dynamics.
    Gage KL; Gartner MJ; Burgreen GW; Wagner WR
    Artif Organs; 2002 Jul; 26(7):600-7. PubMed ID: 12081518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of plasma resistant hollow fiber membranes for artificial lungs.
    Eash HJ; Jones HM; Hattler BG; Federspiel WJ
    ASAIO J; 2004; 50(5):491-7. PubMed ID: 15497391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.