BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 22927759)

  • 1. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles.
    Roohi F; Lohrke J; Ide A; Schütz G; Dassler K
    Int J Nanomedicine; 2012; 7():4447-58. PubMed ID: 22927759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages.
    Saito S; Tsugeno M; Koto D; Mori Y; Yoshioka Y; Nohara S; Murase K
    Int J Nanomedicine; 2012; 7():5415-21. PubMed ID: 23091384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size and PEG Length-Controlled PEGylated Monocrystalline Superparamagnetic Iron Oxide Nanocomposite for MRI Contrast Agent.
    Deng LH; Jiang H; Lu FL; Wang HW; Pu Y; Wu CQ; Tang HJ; Xu Y; Chen TW; Zhu J; Shen CY; Zhang XM
    Int J Nanomedicine; 2021; 16():201-211. PubMed ID: 33447035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.
    Briley-Saebo KC; Johansson LO; Hustvedt SO; Haldorsen AG; Bjørnerud A; Fayad ZA; Ahlstrom HK
    Invest Radiol; 2006 Jul; 41(7):560-71. PubMed ID: 16772849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent.
    Masoudi A; Madaah Hosseini HR; Shokrgozar MA; Ahmadi R; Oghabian MA
    Int J Pharm; 2012 Aug; 433(1-2):129-41. PubMed ID: 22579990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency.
    Matuszewski L; Persigehl T; Wall A; Schwindt W; Tombach B; Fobker M; Poremba C; Ebert W; Heindel W; Bremer C
    Radiology; 2005 Apr; 235(1):155-61. PubMed ID: 15749976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: comparison of physicochemical properties and the in vivo behaviour.
    Lind K; Kresse M; Debus NP; Müller RH
    J Drug Target; 2002 May; 10(3):221-30. PubMed ID: 12075823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity.
    Tong S; Hou S; Zheng Z; Zhou J; Bao G
    Nano Lett; 2010 Nov; 10(11):4607-13. PubMed ID: 20939602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles.
    Dassler K; Roohi F; Lohrke J; Ide A; Remmele S; Hütter J; Pietsch H; Pison U; Schütz G
    Invest Radiol; 2012 Jul; 47(7):383-91. PubMed ID: 22659596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liver-directed superparamagnetic iron oxide: quantitation of T2 relaxation effects.
    Pouliquen D; Lucet I; Chouly C; Perdrisot R; Le Jeune JJ; Jallet P
    Magn Reson Imaging; 1993; 11(2):219-28. PubMed ID: 8455432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T
    Xiao S; Yu X; Zhang L; Zhang Y; Fan W; Sun T; Zhou C; Liu Y; Liu Y; Gong M; Zhang D
    Int J Nanomedicine; 2019; 14():8499-8507. PubMed ID: 31695377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating size-dependent relaxivity of PEGylated-USPIOs to develop gadolinium-free T1 contrast agents for vascular imaging.
    Khandhar AP; Wilson GJ; Kaul MG; Salamon J; Jung C; Krishnan KM
    J Biomed Mater Res A; 2018 Sep; 106(9):2440-2447. PubMed ID: 29664208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress.
    Yoo E; Cheng HA; Nardacci LE; Beaman DJ; Drinnan CT; Lee C; Fishbein KW; Spencer RG; Fisher OZ; Doiron AL
    Colloids Surf B Biointerfaces; 2017 Oct; 158():578-588. PubMed ID: 28750340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of superparamagnetic iron oxide nanoparticles for MR-visualization of surgical implants.
    Slabu I; Guntherodt G; Schmitz-Rode T; Hodenius M; Kramer N; Donker H; Krombach GA; Otto J; Klinge U; Baumann M
    Curr Pharm Biotechnol; 2012 Mar; 13(4):545-51. PubMed ID: 22214499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New strategies to prolong the in vivo life span of iron-based contrast agents for MRI.
    Antonelli A; Sfara C; Battistelli S; Canonico B; Arcangeletti M; Manuali E; Salamida S; Papa S; Magnani M
    PLoS One; 2013; 8(10):e78542. PubMed ID: 24223101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy.
    Liang PC; Chen YC; Chiang CF; Mo LR; Wei SY; Hsieh WY; Lin WL
    Int J Nanomedicine; 2016; 11():2021-37. PubMed ID: 27274233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity.
    LaConte LE; Nitin N; Zurkiya O; Caruntu D; O'Connor CJ; Hu X; Bao G
    J Magn Reson Imaging; 2007 Dec; 26(6):1634-41. PubMed ID: 17968941
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.