These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22927994)
41. Predicting linear B-cell epitopes using string kernels. El-Manzalawy Y; Dobbs D; Honavar V J Mol Recognit; 2008; 21(4):243-55. PubMed ID: 18496882 [TBL] [Abstract][Full Text] [Related]
42. Introducing of an integrated artificial neural network and Chou's pseudo amino acid composition approach for computational epitope-mapping of Crimean-Congo haemorrhagic fever virus antigens. Nosrati M; Mohabatkar H; Behbahani M Int Immunopharmacol; 2020 Jan; 78():106020. PubMed ID: 31776090 [TBL] [Abstract][Full Text] [Related]
43. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. Yao B; Zhang L; Liang S; Zhang C PLoS One; 2012; 7(9):e45152. PubMed ID: 22984622 [TBL] [Abstract][Full Text] [Related]
44. ElliPro: a new structure-based tool for the prediction of antibody epitopes. Ponomarenko J; Bui HH; Li W; Fusseder N; Bourne PE; Sette A; Peters B BMC Bioinformatics; 2008 Dec; 9():514. PubMed ID: 19055730 [TBL] [Abstract][Full Text] [Related]
45. Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. Yao B; Zheng D; Liang S; Zhang C PLoS One; 2013; 8(4):e62249. PubMed ID: 23620816 [TBL] [Abstract][Full Text] [Related]
47. SVMTriP: A Method to Predict B-Cell Linear Antigenic Epitopes. Yao B; Zheng D; Liang S; Zhang C Methods Mol Biol; 2020; 2131():299-307. PubMed ID: 32162263 [TBL] [Abstract][Full Text] [Related]
48. LBCEPred: a machine learning model to predict linear B-cell epitopes. Alghamdi W; Attique M; Alzahrani E; Ullah MZ; Khan YD Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35262658 [TBL] [Abstract][Full Text] [Related]
49. A novel conformational B-cell epitope prediction method based on mimotope and patch analysis. Sun P; Qi J; Zhao Y; Huang Y; Yang G; Ma Z; Li Y J Theor Biol; 2016 Apr; 394():102-108. PubMed ID: 26804644 [TBL] [Abstract][Full Text] [Related]
50. Predicting linear B-cell epitopes by using sequence-derived structural and physicochemical features. Zhang W; Liu J; Zhao M; Li Q Int J Data Min Bioinform; 2012; 6(5):557-69. PubMed ID: 23155782 [TBL] [Abstract][Full Text] [Related]
51. Epitopia: a web-server for predicting B-cell epitopes. Rubinstein ND; Mayrose I; Martz E; Pupko T BMC Bioinformatics; 2009 Sep; 10():287. PubMed ID: 19751513 [TBL] [Abstract][Full Text] [Related]
52. SEMA: Antigen B-cell conformational epitope prediction using deep transfer learning. Shashkova TI; Umerenkov D; Salnikov M; Strashnov PV; Konstantinova AV; Lebed I; Shcherbinin DN; Asatryan MN; Kardymon OL; Ivanisenko NV Front Immunol; 2022; 13():960985. PubMed ID: 36189325 [TBL] [Abstract][Full Text] [Related]
54. Prediction of conformational epitopes with the use of a knowledge-based energy function and geometrically related neighboring residue characteristics. Lo YT; Pai TW; Wu WK; Chang HT BMC Bioinformatics; 2013; 14 Suppl 4(Suppl 4):S3. PubMed ID: 23514199 [TBL] [Abstract][Full Text] [Related]
55. Mining for the antibody-antigen interacting associations that predict the B cell epitopes. Zhao L; Li J BMC Struct Biol; 2010 May; 10 Suppl 1(Suppl 1):S6. PubMed ID: 20487513 [TBL] [Abstract][Full Text] [Related]
56. Databases for B-cell epitopes. Liu J; Zhang W Methods Mol Biol; 2014; 1184():135-48. PubMed ID: 25048122 [TBL] [Abstract][Full Text] [Related]
57. Shotgun Immunoproteomic Approach for the Discovery of Linear B-Cell Epitopes in Biothreat Agents D'haeseleer P; Collette NM; Lao V; Segelke BW; Branda SS; Franco M Front Immunol; 2021; 12():716676. PubMed ID: 34659206 [TBL] [Abstract][Full Text] [Related]
58. epitope3D: a machine learning method for conformational B-cell epitope prediction. da Silva BM; Myung Y; Ascher DB; Pires DEV Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34676398 [TBL] [Abstract][Full Text] [Related]
59. PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Sweredoski MJ; Baldi P Bioinformatics; 2008 Jun; 24(12):1459-60. PubMed ID: 18443018 [TBL] [Abstract][Full Text] [Related]
60. Machine learning approaches for prediction of linear B-cell epitopes on proteins. Söllner J; Mayer B J Mol Recognit; 2006; 19(3):200-8. PubMed ID: 16598694 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]