These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 22928286)
1. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. Opit GP; Phillips TW; Aikins MJ; Hasan MM J Econ Entomol; 2012 Aug; 105(4):1107-14. PubMed ID: 22928286 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic molecular markers for phosphine resistance in U.S. populations of Tribolium castaneum and Rhyzopertha dominica. Chen Z; Schlipalius D; Opit G; Subramanyam B; Phillips TW PLoS One; 2015; 10(3):e0121343. PubMed ID: 25826251 [TBL] [Abstract][Full Text] [Related]
3. Efficacies of spinosad and a combination of chlorpyrifos-methyl and deltamethrin against phosphine-resistant Rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: Tenebrionidae) on wheat. Bajracharya NS; Opit GP; Talley J; Jones CL J Econ Entomol; 2013 Oct; 106(5):2208-15. PubMed ID: 24224266 [TBL] [Abstract][Full Text] [Related]
4. Development, application and evaluation of three novel TaqMan qPCR assays for phosphine resistance monitoring in major stored product pests Tribolium castaneum and Rhyzopertha dominica. Sakka MK; Mavridis K; Papapostolou KM; Riga M; Vontas J; Athanassiou CG Pest Manag Sci; 2024 Feb; 80(2):275-281. PubMed ID: 37671455 [TBL] [Abstract][Full Text] [Related]
5. Preliminary Study on the Differences in Hydrocarbons Between Phosphine-Susceptible and -Resistant Strains of Alnajim I; Agarwal M; Liu T; Li B; Du X; Ren Y Molecules; 2020 Mar; 25(7):. PubMed ID: 32235326 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of Sulfuryl Fluoride Fumigation for the Control of Phosphine-Resistant Grain Insects Infesting Stored Wheat. Opit GP; Thoms E; Phillips TW; Payton ME J Econ Entomol; 2016 Apr; 109(2):930-41. PubMed ID: 26743219 [TBL] [Abstract][Full Text] [Related]
7. Mobility of Phosphine-Susceptible and -Resistant Rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: Tenebrionidae) After Exposure to Controlled Release Materials With Existing and Novel Active Ingredients. Ranabhat S; Zhu KY; Bingham GV; Morrison WR J Econ Entomol; 2022 Jun; 115(3):888-903. PubMed ID: 35429272 [TBL] [Abstract][Full Text] [Related]
8. Phosphine Resistance in North American Field Populations of the Lesser Grain Borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). Afful E; Elliott B; Nayak MK; Phillips TW J Econ Entomol; 2018 Feb; 111(1):463-469. PubMed ID: 29182779 [TBL] [Abstract][Full Text] [Related]
9. Phosphine Resistance in Adult and Immature Life Stages of Tribolium castaneum (Coleoptera: Tenebrionidae) and Plodia interpunctella (Lepidoptera: Pyralidae) Populations in California. Gautam SG; Opit GP; Hosoda E J Econ Entomol; 2016 Dec; 109(6):2525-2533. PubMed ID: 27744283 [TBL] [Abstract][Full Text] [Related]
10. Detection of Phosphine Resistance in Field Populations of Four Key Stored-Grain Insect Pests in Pakistan. Wakil W; Kavallieratos NG; Usman M; Gulzar S; El-Shafie HAF Insects; 2021 Mar; 12(4):. PubMed ID: 33810271 [TBL] [Abstract][Full Text] [Related]
11. Geographic Variation in Phosphine Resistance Among North American Populations of the Red Flour Beetle (Coleoptera: Tenebrionidae). Cato AJ; Elliott B; Nayak MK; Phillips TW J Econ Entomol; 2017 Jun; 110(3):1359-1365. PubMed ID: 28369429 [TBL] [Abstract][Full Text] [Related]
12. Phosphine Resistance in Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) Collected From Grain Storage Facilities in Oklahoma, USA. Konemann CE; Hubhachen Z; Opit GP; Gautam S; Bajracharya NS J Econ Entomol; 2017 Jun; 110(3):1377-1383. PubMed ID: 28383719 [TBL] [Abstract][Full Text] [Related]
14. Scaling recovery of susceptible and resistant stored product insects after short exposures to phosphine by using automated video-tracking software. Agrafioti P; Brabec DL; Morrison WR; Campbell JF; Athanassiou CG Pest Manag Sci; 2021 Mar; 77(3):1245-1255. PubMed ID: 33051965 [TBL] [Abstract][Full Text] [Related]
15. Toxicity of Chlorine Dioxide Gas to Phosphine-Susceptible and -Resistant Adults of Five Stored-Product Insect Species: Influence of Temperature and Food During Gas Exposure. E X; Li B; Subramanyam B J Econ Entomol; 2018 Aug; 111(4):1947-1957. PubMed ID: 29992333 [TBL] [Abstract][Full Text] [Related]
16. Comparison of aeration and spinosad for suppressing insects in stored wheat. Flinn PW; Subramanyam B; Arthur FH J Econ Entomol; 2004 Aug; 97(4):1465-73. PubMed ID: 15384362 [TBL] [Abstract][Full Text] [Related]
17. Spread of phosphine resistance among brazilian populations of three species of stored product insects. Pimentel MA; Faroni LR; Silva FH; Batista MD; Guedes RN Neotrop Entomol; 2010; 39(1):101-7. PubMed ID: 20305905 [TBL] [Abstract][Full Text] [Related]
19. Variation in susceptibility of field strains of three stored grain insect species to spinosad and chlorpyrifos-methyl plus deltamethrin on hard red winter wheat. Sehgal B; Subramanyam B; Arthur FH; Gill BS J Econ Entomol; 2013 Aug; 106(4):1911-9. PubMed ID: 24020310 [TBL] [Abstract][Full Text] [Related]
20. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests. Jagadeesan R; Nayak MK Pest Manag Sci; 2017 Jul; 73(7):1391-1401. PubMed ID: 27783467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]