BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22928486)

  • 1. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.
    Martin G; Guggiari M; Bravo D; Zopfi J; Cailleau G; Aragno M; Job D; Verrecchia E; Junier P
    Environ Microbiol; 2012 Nov; 14(11):2960-70. PubMed ID: 22928486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of oxalotrophic bacteria from tropical soils.
    Bravo D; Braissant O; Cailleau G; Verrecchia E; Junier P
    Arch Microbiol; 2015 Jan; 197(1):65-77. PubMed ID: 25381572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments.
    Bravo D; Martin G; David MM; Cailleau G; Verrecchia E; Junier P
    FEMS Microbiol Lett; 2013 Nov; 348(2):103-11. PubMed ID: 24033776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of oxalotrophic bacteria able to disperse on fungal mycelium.
    Bravo D; Cailleau G; Bindschedler S; Simon A; Job D; Verrecchia E; Junier P
    FEMS Microbiol Lett; 2013 Nov; 348(2):157-66. PubMed ID: 24106816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the frc gene as a molecular marker to characterize oxalate-oxidizing bacterial abundance and diversity structure in soil.
    Khammar N; Martin G; Ferro K; Job D; Aragno M; Verrecchia E
    J Microbiol Methods; 2009 Feb; 76(2):120-7. PubMed ID: 18930770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of saprotrophic fungi and bacteria in soil.
    Rousk J; Bååth E
    FEMS Microbiol Ecol; 2011 Oct; 78(1):17-30. PubMed ID: 21470255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of an isothermal microcalorimetry assay to characterize microbial oxalotrophic activity.
    Bravo D; Braissant O; Solokhina A; Clerc M; Daniels AU; Verrecchia E; Junier P
    FEMS Microbiol Ecol; 2011 Nov; 78(2):266-74. PubMed ID: 21696406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential.
    Grąz M
    World J Microbiol Biotechnol; 2024 Apr; 40(6):178. PubMed ID: 38662173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of elemental sulfur by bacteria and fungi in soil.
    Czaban J; Kobus J
    Acta Microbiol Pol; 2000; 49(2):135-47. PubMed ID: 11093676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization.
    Rousk J; Brookes PC; Bååth E
    Appl Environ Microbiol; 2009 Mar; 75(6):1589-96. PubMed ID: 19151179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Investigations on the interaction between soil reaction and microorganisms. 3. The effect of the pH-range on microorganisms].
    Hirte WF
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 125(7):647-60. PubMed ID: 5537387
    [No Abstract]   [Full Text] [Related]  

  • 12. The development of fungi as affected by pH and type of soil, in relation to the occurrence of bacteria and soil fungistatic activity.
    Weyman-Kaczmarkowa W; Pedziwilk Z
    Microbiol Res; 2000 Jul; 155(2):107-12. PubMed ID: 10950193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of phosphorus supply and signal inhibitors on oxalate efflux in ectomycorrhizal fungi].
    Yang H; Li Y; Huang J
    Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):788-94. PubMed ID: 26563005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and ecology of oxalotrophic bacteria.
    Hervé V; Junier T; Bindschedler S; Verrecchia E; Junier P
    World J Microbiol Biotechnol; 2016 Feb; 32(2):28. PubMed ID: 26748805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuing Impacts of Selective Inhibition on Bacterial and Fungal Communities in an Agricultural Soil.
    Pan Y; Wu Y; Li X; Zeng J; Lin X
    Microb Ecol; 2019 Nov; 78(4):927-935. PubMed ID: 30911770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal biotransformation of zinc silicate and sulfide mineral ores.
    Wei Z; Liang X; Pendlowski H; Hillier S; Suntornvongsagul K; Sihanonth P; Gadd GM
    Environ Microbiol; 2013 Aug; 15(8):2173-86. PubMed ID: 23419112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal toxicity affects fungal and bacterial activities in soil differently.
    Rajapaksha RM; Tobor-Kapłon MA; Bååth E
    Appl Environ Microbiol; 2004 May; 70(5):2966-73. PubMed ID: 15128558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.
    Cébron A; Beguiristain T; Bongoua-Devisme J; Denonfoux J; Faure P; Lorgeoux C; Ouvrard S; Parisot N; Peyret P; Leyval C
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13724-38. PubMed ID: 25616383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR.
    Martin-Laurent F; Piutti S; Hallet S; Wagschal I; Philippot L; Catroux G; Soulas G
    Pest Manag Sci; 2003 Mar; 59(3):259-68. PubMed ID: 12639042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining the fungal and bacterial niche overlap using selective inhibitors in soil.
    Rousk J; Demoling LA; Bahr A; Bååth E
    FEMS Microbiol Ecol; 2008 Mar; 63(3):350-8. PubMed ID: 18205814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.