These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Recruitment of glycosyl hydrolase proteins in a cone snail venomous arsenal: further insights into biomolecular features of Conus venoms. Violette A; Leonardi A; Piquemal D; Terrat Y; Biass D; Dutertre S; Noguier F; Ducancel F; Stöcklin R; Križaj I; Favreau P Mar Drugs; 2012 Feb; 10(2):258-280. PubMed ID: 22412800 [TBL] [Abstract][Full Text] [Related]
3. High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors. Terrat Y; Biass D; Dutertre S; Favreau P; Remm M; Stöcklin R; Piquemal D; Ducancel F Toxicon; 2012 Jan; 59(1):34-46. PubMed ID: 22079299 [TBL] [Abstract][Full Text] [Related]
4. Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach. Violette A; Biass D; Dutertre S; Koua D; Piquemal D; Pierrat F; Stöcklin R; Favreau P J Proteomics; 2012 Sep; 75(17):5215-25. PubMed ID: 22705119 [TBL] [Abstract][Full Text] [Related]
5. High accuracy mass spectrometry comparison of Conus bandanus and Conus marmoreus venoms from the South Central Coast of Vietnam. Nguyen B; Molgó J; Lamthanh H; Benoit E; Khuc TA; Ngo DN; Nguyen NT; Millares P; Le Caer JP Toxicon; 2013 Dec; 75():148-59. PubMed ID: 23792454 [TBL] [Abstract][Full Text] [Related]
6. Uncovering intense protein diversification in a cone snail venom gland using an integrative venomics approach. Biass D; Violette A; Hulo N; Lisacek F; Favreau P; Stöcklin R J Proteome Res; 2015 Feb; 14(2):628-38. PubMed ID: 25536169 [TBL] [Abstract][Full Text] [Related]
7. Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Dutertre S; Biass D; Stöcklin R; Favreau P Toxicon; 2010 Jul; 55(8):1453-62. PubMed ID: 20206197 [TBL] [Abstract][Full Text] [Related]
8. A 'conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile--the pharmacological importance of post-translational modifications. Bergeron ZL; Chun JB; Baker MR; Sandall DW; Peigneur S; Yu PY; Thapa P; Milisen JW; Tytgat J; Livett BG; Bingham JP Peptides; 2013 Nov; 49():145-58. PubMed ID: 24055806 [TBL] [Abstract][Full Text] [Related]
9. Comparative proteomic study of the venom of the piscivorous cone snail Conus consors. Biass D; Dutertre S; Gerbault A; Menou JL; Offord R; Favreau P; Stöcklin R J Proteomics; 2009 Mar; 72(2):210-8. PubMed ID: 19457347 [TBL] [Abstract][Full Text] [Related]
10. High molecular weight components of the injected venom of fish-hunting cone snails target the vascular system. Safavi-Hemami H; Möller C; Marí F; Purcell AW J Proteomics; 2013 Oct; 91():97-105. PubMed ID: 23872086 [TBL] [Abstract][Full Text] [Related]
11. Specialisation of the venom gland proteome in predatory cone snails reveals functional diversification of the conotoxin biosynthetic pathway. Safavi-Hemami H; Siero WA; Gorasia DG; Young ND; Macmillan D; Williamson NA; Purcell AW J Proteome Res; 2011 Sep; 10(9):3904-19. PubMed ID: 21707029 [TBL] [Abstract][Full Text] [Related]
12. Diversity of Conopeptides and Conoenzymes from the Venom Duct of the Marine Cone Snail Rajaian Pushpabai R; Wilson Alphonse CR; Mani R; Arun Apte D; Franklin JB Mar Drugs; 2021 Apr; 19(4):. PubMed ID: 33916793 [TBL] [Abstract][Full Text] [Related]
13. Peak capacity optimisation for high resolution peptide profiling in complex mixtures by liquid chromatography coupled to time-of-flight mass spectrometry: application to the Conus consors cone snail venom. Eugster PJ; Biass D; Guillarme D; Favreau P; Stöcklin R; Wolfender JL J Chromatogr A; 2012 Oct; 1259():187-99. PubMed ID: 22658136 [TBL] [Abstract][Full Text] [Related]
14. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Dutertre S; Jin AH; Kaas Q; Jones A; Alewood PF; Lewis RJ Mol Cell Proteomics; 2013 Feb; 12(2):312-29. PubMed ID: 23152539 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome and proteome of Conus planorbis identify the nicotinic receptors as primary target for the defensive venom. Jin AH; Vetter I; Himaya SW; Alewood PF; Lewis RJ; Dutertre S Proteomics; 2015 Dec; 15(23-24):4030-40. PubMed ID: 26506909 [TBL] [Abstract][Full Text] [Related]
16. Combined proteomic and transcriptomic interrogation of the venom gland of Conus geographus uncovers novel components and functional compartmentalization. Safavi-Hemami H; Hu H; Gorasia DG; Bandyopadhyay PK; Veith PD; Young ND; Reynolds EC; Yandell M; Olivera BM; Purcell AW Mol Cell Proteomics; 2014 Apr; 13(4):938-53. PubMed ID: 24478445 [TBL] [Abstract][Full Text] [Related]
17. Proteomic interrogation of venom delivery in marine cone snails: novel insights into the role of the venom bulb. Safavi-Hemami H; Young ND; Williamson NA; Purcell AW J Proteome Res; 2010 Nov; 9(11):5610-9. PubMed ID: 20818826 [TBL] [Abstract][Full Text] [Related]
18. PPIase is associated with the diversity of conotoxins from cone snail venom glands. Wang L; Tang W; Wang X; Chen Y; Wu Y; Qiang Y; Feng Y; Ren Z; Chen S; Xu A Biochimie; 2015 May; 112():129-38. PubMed ID: 25769415 [TBL] [Abstract][Full Text] [Related]
19. Venom variation during prey capture by the cone snail, Conus textile. Prator CA; Murayama KM; Schulz JR PLoS One; 2014; 9(6):e98991. PubMed ID: 24940882 [TBL] [Abstract][Full Text] [Related]
20. Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS. Rodriguez AM; Dutertre S; Lewis RJ; Marí F Anal Bioanal Chem; 2015 Aug; 407(20):6105-16. PubMed ID: 26048056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]