BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 22928747)

  • 1. Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.
    Franceschini S; Fedkenheuer M; Vogelaar NJ; Robinson HH; Sobrado P; Mattevi A
    Biochemistry; 2012 Sep; 51(36):7043-5. PubMed ID: 22928747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.
    Chocklett SW; Sobrado P
    Biochemistry; 2010 Aug; 49(31):6777-83. PubMed ID: 20614882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.
    Shirey C; Badieyan S; Sobrado P
    J Biol Chem; 2013 Nov; 288(45):32440-32448. PubMed ID: 24072704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of N-hydroxylation catalyzed by flavin-dependent monooxygenases.
    Badieyan S; Bach RD; Sobrado P
    J Org Chem; 2015 Feb; 80(4):2139-47. PubMed ID: 25633869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus.
    Giddings LA; Lountos GT; Kim KW; Brockley M; Needle D; Cherry S; Tropea JE; Waugh DS
    PLoS One; 2021; 16(3):e0248385. PubMed ID: 33784308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase.
    Mayfield JA; Frederick RE; Streit BR; Wencewicz TA; Ballou DP; DuBois JL
    J Biol Chem; 2010 Oct; 285(40):30375-88. PubMed ID: 20650894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase.
    Romero E; Fedkenheuer M; Chocklett SW; Qi J; Oppenheimer M; Sobrado P
    Biochim Biophys Acta; 2012 Jun; 1824(6):850-7. PubMed ID: 22465572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Determinants of Flavin Dynamics in a Class B Monooxygenase.
    Campbell AC; Robinson R; Mena-Aguilar D; Sobrado P; Tanner JJ
    Biochemistry; 2020 Dec; 59(48):4609-4616. PubMed ID: 33226785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution to catalysis of ornithine binding residues in ornithine N5-monooxygenase.
    Robinson R; Qureshi IA; Klancher CA; Rodriguez PJ; Tanner JJ; Sobrado P
    Arch Biochem Biophys; 2015 Nov; 585():25-31. PubMed ID: 26375201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of catalysis in flavin-dependent monooxygenases.
    Palfey BA; McDonald CA
    Arch Biochem Biophys; 2010 Jan; 493(1):26-36. PubMed ID: 19944667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulated O2 activation in flavin-dependent monooxygenases.
    Frederick RE; Mayfield JA; DuBois JL
    J Am Chem Soc; 2011 Aug; 133(32):12338-41. PubMed ID: 21774554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping conformational states of a flavin-dependent
    Campbell AC; Stiers KM; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2020 Sep; 295(38):13239-13249. PubMed ID: 32723870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.
    Martín Del Campo JS; Vogelaar N; Tolani K; Kizjakina K; Harich K; Sobrado P
    ACS Chem Biol; 2016 Nov; 11(11):3035-3042. PubMed ID: 27588426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases.
    Olucha J; Lamb AL
    Bioorg Chem; 2011 Dec; 39(5-6):171-7. PubMed ID: 21871647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavin dependent monooxygenases.
    Huijbers MM; Montersino S; Westphal AH; Tischler D; van Berkel WJ
    Arch Biochem Biophys; 2014 Feb; 544():2-17. PubMed ID: 24361254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction.
    Meneely KM; Barr EW; Bollinger JM; Lamb AL
    Biochemistry; 2009 May; 48(20):4371-6. PubMed ID: 19368334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights in the kinetic mechanism of the eukaryotic Baeyer-Villiger monooxygenase BVMOAf1 from Aspergillus fumigatus Af293.
    Mascotti ML; Kurina-Sanz M; Juri Ayub M; Fraaije MW
    Biochimie; 2014 Dec; 107 Pt B():270-6. PubMed ID: 25230086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.