These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 22928772)
1. Real-time noninvasive imaging of fatty acid uptake in vivo. Henkin AH; Cohen AS; Dubikovskaya EA; Park HM; Nikitin GF; Auzias MG; Kazantzis M; Bertozzi CR; Stahl A ACS Chem Biol; 2012 Nov; 7(11):1884-91. PubMed ID: 22928772 [TBL] [Abstract][Full Text] [Related]
2. Measurement of long-chain fatty acid uptake into adipocytes. Dubikovskaya E; Chudnovskiy R; Karateev G; Park HM; Stahl A Methods Enzymol; 2014; 538():107-34. PubMed ID: 24529436 [TBL] [Abstract][Full Text] [Related]
3. A System for In Vivo Imaging of Hepatic Free Fatty Acid Uptake. Park HM; Russo KA; Karateev G; Park M; Dubikovskaya E; Kriegsfeld LJ; Stahl A Gastroenterology; 2017 Jan; 152(1):78-81.e2. PubMed ID: 27742378 [TBL] [Abstract][Full Text] [Related]
4. Application of a cybLuc Aminoluciferin for Deep Tissue Bioluminescence Imaging in Rodent Models. Li X; Li M Methods Mol Biol; 2020; 2081():219-228. PubMed ID: 31721129 [TBL] [Abstract][Full Text] [Related]
5. Quantitation of cellular and topical uptake of luciferin-oligoarginine conjugates. Rothbard JB; Jones LR Methods Mol Biol; 2011; 683():487-504. PubMed ID: 21053152 [TBL] [Abstract][Full Text] [Related]
6. Noninvasive monitoring of β-cell mass and fetal β-cell genesis in mice using bioluminescence imaging. Sekiguchi Y; Owada J; Oishi H; Katsumata T; Ikeda K; Kudo T; Takahashi S Exp Anim; 2012; 61(4):445-51. PubMed ID: 22850644 [TBL] [Abstract][Full Text] [Related]
7. In Vivo Bacterial Imaging Using Bioluminescence. Barbier M; Bevere J; Damron FH Methods Mol Biol; 2018; 1790():87-97. PubMed ID: 29858785 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Molecular Bioluminescence Imaging: New Tools and Applications. Mezzanotte L; van 't Root M; Karatas H; Goun EA; Löwik CWGM Trends Biotechnol; 2017 Jul; 35(7):640-652. PubMed ID: 28501458 [TBL] [Abstract][Full Text] [Related]
9. Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin. Furuya T; Takehara I; Shimura A; Kishimoto H; Yasujima T; Ohta K; Shirasaka Y; Yuasa H; Inoue K Biochem Biophys Res Commun; 2018 Jan; 495(3):2152-2157. PubMed ID: 29273507 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of Molecular Strain Probes for Illuminating Protein-Protein Interactions. Kim SB; Fujii R Methods Mol Biol; 2016; 1461():175-82. PubMed ID: 27424904 [TBL] [Abstract][Full Text] [Related]
11. Fatty acid handling protein expression in adipose tissue, fatty acid composition of adipose tissue and serum, and markers of insulin resistance. Gertow K; Rosell M; Sjögren P; Eriksson P; Vessby B; de Faire U; Hamsten A; Hellenius ML; Fisher RM Eur J Clin Nutr; 2006 Dec; 60(12):1406-13. PubMed ID: 16788709 [TBL] [Abstract][Full Text] [Related]
12. Membrane permeation and intracellular trafficking of long chain fatty acids: insights from Escherichia coli and 3T3-L1 adipocytes. Mangroo D; Trigatti BL; Gerber GE Biochem Cell Biol; 1995; 73(5-6):223-34. PubMed ID: 8829367 [TBL] [Abstract][Full Text] [Related]
13. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. Zhan T; Poppelreuther M; Ehehalt R; Füllekrug J PLoS One; 2012; 7(9):e45087. PubMed ID: 23024797 [TBL] [Abstract][Full Text] [Related]
14. Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo. Rathod M; Mal A; De A Methods Mol Biol; 2018; 1790():51-74. PubMed ID: 29858783 [TBL] [Abstract][Full Text] [Related]
15. Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype. Sawada T; Miyoshi H; Shimada K; Suzuki A; Okamatsu-Ogura Y; Perfield JW; Kondo T; Nagai S; Shimizu C; Yoshioka N; Greenberg AS; Kimura K; Koike T PLoS One; 2010 Nov; 5(11):e14006. PubMed ID: 21103377 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of impaired beta-cell function in nonobese-diabetic (NOD) mouse model using bioluminescence imaging. Sever D; Eldor R; Sadoun G; Amior L; Dubois D; Boitard C; Aflalo C; Melloul D FASEB J; 2011 Feb; 25(2):676-84. PubMed ID: 21118902 [TBL] [Abstract][Full Text] [Related]
17. Real-time quantification of fatty acid uptake using a novel fluorescence assay. Liao J; Sportsman R; Harris J; Stahl A J Lipid Res; 2005 Mar; 46(3):597-602. PubMed ID: 15547301 [TBL] [Abstract][Full Text] [Related]
18. Novel No-Wash Luminogenic Probes for the Detection of Transporter Uptake Activity. Mustafa D; Ma D; Zhou W; Meisenheimer P; Cali JJ Bioconjug Chem; 2016 Jan; 27(1):87-101. PubMed ID: 26684581 [TBL] [Abstract][Full Text] [Related]
19. Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice. Wender PA; Goun EA; Jones LR; Pillow TH; Rothbard JB; Shinde R; Contag CH Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10340-5. PubMed ID: 17563383 [TBL] [Abstract][Full Text] [Related]
20. Protein-mediated fatty acid uptake: novel insights from in vivo models. Doege H; Stahl A Physiology (Bethesda); 2006 Aug; 21():259-68. PubMed ID: 16868315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]