These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 2292887)
1. A model study of stability and oscillations in the myocardial cell membrane. Vinet A; Roberge FA J Theor Biol; 1990 Dec; 147(3):377-412. PubMed ID: 2292887 [TBL] [Abstract][Full Text] [Related]
2. Studies on re-entrant arrhythmias and ectopic beats in excitable tissues by bifurcation analyses. Chay TR; Lee YS J Theor Biol; 1992 Mar; 155(2):137-71. PubMed ID: 1333552 [TBL] [Abstract][Full Text] [Related]
3. Simulations of the cardiac action potential based on the Hodgkin-Huxley kinetics with the use of Microsoft Excel spreadsheets. Wu SN Chin J Physiol; 2004 Mar; 47(1):15-22. PubMed ID: 15239590 [TBL] [Abstract][Full Text] [Related]
4. Proarrhythmic and antiarrhythmic actions of ion channel blockers on arrhythmias in the heart: model study. Chay TR Am J Physiol; 1996 Jul; 271(1 Pt 2):H329-56. PubMed ID: 8760192 [TBL] [Abstract][Full Text] [Related]
5. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis. Bauer S; Röder G; Bär M Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261 [TBL] [Abstract][Full Text] [Related]
6. Analysis of an iterative difference equation model of the cardiac cell membrane. Vinet A; Roberge FA J Theor Biol; 1994 Sep; 170(2):201-14. PubMed ID: 7967641 [TBL] [Abstract][Full Text] [Related]
7. Excitability and repolarization in an ionic model of the cardiac cell membrane. Vinet A; Roberge FA J Theor Biol; 1994 Sep; 170(2):183-99. PubMed ID: 7967640 [TBL] [Abstract][Full Text] [Related]
8. Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. Kurachi Y J Physiol; 1985 Sep; 366():365-85. PubMed ID: 2414434 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of the action potential of ventricular myocardial fibres. Beeler GW; Reuter H J Physiol; 1977 Jun; 268(1):177-210. PubMed ID: 874889 [TBL] [Abstract][Full Text] [Related]
10. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup. Gray RA; Pathmanathan P PLoS Comput Biol; 2016 Oct; 12(10):e1005087. PubMed ID: 27749895 [TBL] [Abstract][Full Text] [Related]
11. Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches. Xia L; Zhang Y; Zhang H; Wei Q; Liu F; Crozier S Physiol Meas; 2006 Nov; 27(11):1125-42. PubMed ID: 17028406 [TBL] [Abstract][Full Text] [Related]
12. Computer model of current-induced early afterdepolarizations in guinea pig ventricular myocytes. Nordin C; Ming Z Am J Physiol; 1995 Jun; 268(6 Pt 2):H2440-59. PubMed ID: 7611496 [TBL] [Abstract][Full Text] [Related]
13. A balance of outward and linear inward ionic currents is required for generation of slow-wave oscillations. Golowasch J; Bose A; Guan Y; Salloum D; Roeser A; Nadim F J Neurophysiol; 2017 Aug; 118(2):1092-1104. PubMed ID: 28539398 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the inward-rectifying potassium current in cat ventricular myocytes. Harvey RD; Ten Eick RE J Gen Physiol; 1988 Apr; 91(4):593-615. PubMed ID: 2455768 [TBL] [Abstract][Full Text] [Related]
15. Some limitations of the double sucrose gap, and its use in a study of the slow outward current in mammalian ventricular muscle. McGuigan JA J Physiol; 1974 Aug; 240(3):775-806. PubMed ID: 4415829 [TBL] [Abstract][Full Text] [Related]
16. Ionic basis and analytical solution of the wenckebach phenomenon in guinea pig ventricular myocytes. Delmar M; Glass L; Michaels DC; Jalife J Circ Res; 1989 Sep; 65(3):775-88. PubMed ID: 2766491 [TBL] [Abstract][Full Text] [Related]
17. Slow inward current and cardiac arrhythmias. Gilmour RF; Zipes DP Am J Cardiol; 1985 Jan; 55(3):89B-101B. PubMed ID: 2857519 [TBL] [Abstract][Full Text] [Related]