These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2292927)

  • 1. Resonance Raman and infrared difference spectroscopy of retinal proteins.
    Siebert F
    Methods Enzymol; 1990; 189():123-36. PubMed ID: 2292927
    [No Abstract]   [Full Text] [Related]  

  • 2. Biomolecular vibrational spectroscopy.
    Mathies RA
    Methods Enzymol; 1995; 246():377-89. PubMed ID: 7752932
    [No Abstract]   [Full Text] [Related]  

  • 3. Reaction-induced infrared difference spectroscopy for the study of protein function and reaction mechanisms.
    Mäntele W
    Trends Biochem Sci; 1993 Jun; 18(6):197-202. PubMed ID: 8346552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A vibrational analysis of rhodopsin and bacteriorhodopsin chromophore analogues: resonance Raman and infrared spectroscopy of chemically modified retinals and Schiff bases.
    Cookingham RE; Lewis A; Lemley AT
    Biochemistry; 1978 Oct; 17(22):4699-711. PubMed ID: 728379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences.
    Balu R; Zhang H; Zukowski E; Chen JY; Markelz AG; Gregurick SK
    Biophys J; 2008 Apr; 94(8):3217-26. PubMed ID: 18199669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote.
    Waschuk SA; Bezerra AG; Shi L; Brown LS
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6879-83. PubMed ID: 15860584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary photochemistry of bacteriorhodopsin: comparison of Fourier transform infrared difference spectra with resonance Raman spectra.
    Rothschild KJ; Marrero H; Braiman M; Mathies R
    Photochem Photobiol; 1984 Nov; 40(5):675-9. PubMed ID: 6514815
    [No Abstract]   [Full Text] [Related]  

  • 8. The molecular mechanism of membrane proteins probed by evanescent infrared waves.
    Nyquist RM; Ataka K; Heberle J
    Chembiochem; 2004 Apr; 5(4):431-6. PubMed ID: 15185365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FTIR and Raman Spectroscopy of Rhodopsins.
    Kandori H; Mizutani Y
    Methods Mol Biol; 2022; 2501():207-228. PubMed ID: 35857230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast spectroscopy of biological photoreceptors.
    Kennis JT; Groot ML
    Curr Opin Struct Biol; 2007 Oct; 17(5):623-30. PubMed ID: 17959372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics in rhodopsin.
    Klein-Seetharaman J
    Chembiochem; 2002 Oct; 3(10):981-6. PubMed ID: 12362363
    [No Abstract]   [Full Text] [Related]  

  • 14. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bathorhodopsin structure in the room-temperature rhodopsin photosequence: picosecond time-resolved coherent anti-Stokes Raman scattering.
    Popp A; Ujj L; Atkinson GH
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):372-6. PubMed ID: 8552641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR studies of retinal proteins.
    Zheng L; Herzfeld J
    J Bioenerg Biomembr; 1992 Apr; 24(2):139-46. PubMed ID: 1526958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The trans-cis isomerization reaction dynamics in sensory rhodopsin II by femtosecond time-resolved midinfrared spectroscopy: chromophore and protein dynamics.
    Diller R; Jakober R; Schumann C; Peters F; Klare JP; Engelhard M
    Biopolymers; 2006 Jul; 82(4):358-62. PubMed ID: 16475156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature.
    Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J
    Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin.
    Kochendoerfer GG; Verdegem PJ; van der Hoef I; Lugtenburg J; Mathies RA
    Biochemistry; 1996 Dec; 35(50):16230-40. PubMed ID: 8973196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory rhodopsin I photocycle intermediate SRI380 contains 13-cis retinal bound via an unprotonated Schiff base.
    Haupts U; Eisfeld W; Stockburger M; Oesterhelt D
    FEBS Lett; 1994 Dec; 356(1):25-9. PubMed ID: 7988713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.