These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 22930315)
1. Open-cell recording of action potentials using active electrode arrays. Braeken D; Jans D; Huys R; Stassen A; Collaert N; Hoffman L; Eberle W; Peumans P; Callewaert G Lab Chip; 2012 Nov; 12(21):4397-402. PubMed ID: 22930315 [TBL] [Abstract][Full Text] [Related]
2. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. Abbott J; Ye T; Ham D; Park H Acc Chem Res; 2018 Mar; 51(3):600-608. PubMed ID: 29437381 [TBL] [Abstract][Full Text] [Related]
3. Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Huys R; Braeken D; Jans D; Stassen A; Collaert N; Wouters J; Loo J; Severi S; Vleugels F; Callewaert G; Verstreken K; Bartic C; Eberle W Lab Chip; 2012 Apr; 12(7):1274-80. PubMed ID: 22337001 [TBL] [Abstract][Full Text] [Related]
4. Localized electrical stimulation of in vitro neurons using an array of sub-cellular sized electrodes. Braeken D; Huys R; Loo J; Bartic C; Borghs G; Callewaert G; Eberle W Biosens Bioelectron; 2010 Dec; 26(4):1474-7. PubMed ID: 20727728 [TBL] [Abstract][Full Text] [Related]
5. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Suzuki I; Fukuda M; Shirakawa K; Jiko H; Gotoh M Biosens Bioelectron; 2013 Nov; 49():270-5. PubMed ID: 23774164 [TBL] [Abstract][Full Text] [Related]
6. Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation. Koester PJ; Tautorat C; Beikirch H; Gimsa J; Baumann W Biosens Bioelectron; 2010 Dec; 26(4):1731-5. PubMed ID: 20800467 [TBL] [Abstract][Full Text] [Related]
7. Intracellular recording of action potentials by nanopillar electroporation. Xie C; Lin Z; Hanson L; Cui Y; Cui B Nat Nanotechnol; 2012 Feb; 7(3):185-90. PubMed ID: 22327876 [TBL] [Abstract][Full Text] [Related]
8. Nanocavity electrode array for recording from electrogenic cells. Hofmann B; Kätelhön E; Schottdorf M; Offenhäusser A; Wolfrum B Lab Chip; 2011 Mar; 11(6):1054-8. PubMed ID: 21286648 [TBL] [Abstract][Full Text] [Related]
9. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics. Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652 [TBL] [Abstract][Full Text] [Related]
10. Spatio-temporal detachment of single cells using microarrayed transparent electrodes. Fukuda J; Kameoka Y; Suzuki H Biomaterials; 2011 Oct; 32(28):6663-9. PubMed ID: 21665269 [TBL] [Abstract][Full Text] [Related]
11. Massively parallel recording of unit and local field potentials with silicon-based electrodes. Csicsvari J; Henze DA; Jamieson B; Harris KD; Sirota A; Barthó P; Wise KD; Buzsáki G J Neurophysiol; 2003 Aug; 90(2):1314-23. PubMed ID: 12904510 [TBL] [Abstract][Full Text] [Related]
12. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928 [TBL] [Abstract][Full Text] [Related]
13. Microfabricated on-chip integrated Au-Ag-Au three-electrode system for in situ mercury ion determination. Chen C; Zhang J; Du Y; Yang X; Wang E Analyst; 2010 May; 135(5):1010-4. PubMed ID: 20419250 [TBL] [Abstract][Full Text] [Related]
14. A CMOS-based microelectrode array for interaction with neuronal cultures. Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452 [TBL] [Abstract][Full Text] [Related]
15. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays. Kopanitsa MV; Afinowi NO; Grant SG BMC Neurosci; 2006 Aug; 7():61. PubMed ID: 16942609 [TBL] [Abstract][Full Text] [Related]
16. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
17. The construction of an individually addressable cell array for selective patterning and electroporation. Xu Y; Yao H; Wang L; Xing W; Cheng J Lab Chip; 2011 Jul; 11(14):2417-23. PubMed ID: 21625729 [TBL] [Abstract][Full Text] [Related]
18. Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip. Schoen I; Fromherz P J Neurophysiol; 2008 Jul; 100(1):346-57. PubMed ID: 18463183 [TBL] [Abstract][Full Text] [Related]
19. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip. Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817 [TBL] [Abstract][Full Text] [Related]
20. Layer-by-layer assembly of poly(ethyleneimine) and plasmid DNA onto transparent indium-tin oxide electrodes for temporally and spatially specific gene transfer. Yamauchi F; Kato K; Iwata H Langmuir; 2005 Aug; 21(18):8360-7. PubMed ID: 16114943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]