BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22931043)

  • 1. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release.
    Wan F; Pei X; Yu B; Ye Q; Zhou F; Xue Q
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4557-65. PubMed ID: 22931043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling.
    Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D
    Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale hairy surfaces for nearly perfect marine antibiofouling.
    Wan F; Ye Q; Yu B; Pei X; Zhou F
    J Mater Chem B; 2013 Aug; 1(29):3599-3606. PubMed ID: 32261174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y; Zhang J; Feng X; Liu D
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings.
    Zhang Z; Finlay JA; Wang L; Gao Y; Callow JA; Callow ME; Jiang S
    Langmuir; 2009 Dec; 25(23):13516-21. PubMed ID: 19689148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer brushes on structural surfaces: a novel synergistic strategy for perfectly resisting algae settlement.
    Zhang Y; Hu H; Pei X; Liu Y; Ye Q; Zhou F
    Biomater Sci; 2017 Nov; 5(12):2493-2500. PubMed ID: 29115306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.
    Goda T; Konno T; Takai M; Moro T; Ishihara K
    Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel.
    Yang WJ; Cai T; Neoh KG; Kang ET; Dickinson GH; Teo SL; Rittschof D
    Langmuir; 2011 Jun; 27(11):7065-76. PubMed ID: 21563843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance?
    Quintana R; Jańczewski D; Vasantha VA; Jana S; Lee SS; Parra-Velandia FJ; Guo S; Parthiban A; Teo SL; Vancso GJ
    Colloids Surf B Biointerfaces; 2014 Aug; 120():118-24. PubMed ID: 24907581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled grafting of well-defined epoxide polymers on hydrogen-terminated silicon substrates by surface-initiated ATRP at ambient temperature.
    Yu WH; Kang ET; Neoh KG
    Langmuir; 2004 Sep; 20(19):8294-300. PubMed ID: 15350105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers.
    Zhao YH; Zhu XY; Wee KH; Bai R
    J Phys Chem B; 2010 Feb; 114(7):2422-9. PubMed ID: 20121056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial Peptide-Conjugated Hierarchical Antifouling Polymer Brushes for Functionalized Catheter Surfaces.
    Zhang XY; Zhao YQ; Zhang Y; Wang A; Ding X; Li Y; Duan S; Ding X; Xu FJ
    Biomacromolecules; 2019 Nov; 20(11):4171-4179. PubMed ID: 31596574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of hydrogen-terminated silicon via surface-initiated atom-transfer radical polymerization and derivatization of the polymer brushes.
    Xu D; Yu WH; Kang ET; Neoh KG
    J Colloid Interface Sci; 2004 Nov; 279(1):78-87. PubMed ID: 15380414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages.
    Gao C; Li G; Xue H; Yang W; Zhang F; Jiang S
    Biomaterials; 2010 Mar; 31(7):1486-92. PubMed ID: 19962753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic anchor for surface-initiated polymerization from metal substrates.
    Fan X; Lin L; Dalsin JL; Messersmith PB
    J Am Chem Soc; 2005 Nov; 127(45):15843-7. PubMed ID: 16277527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials.
    Wu Z; Tong W; Jiang W; Liu X; Wang Y; Chen H
    Colloids Surf B Biointerfaces; 2012 Aug; 96():37-43. PubMed ID: 22510455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A substrate-independent method for surface grafting polymer layers by atom transfer radical polymerization: reduction of protein adsorption.
    Coad BR; Lu Y; Meagher L
    Acta Biomater; 2012 Feb; 8(2):608-18. PubMed ID: 22023749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimicking micropatterned surfaces and their effect on marine biofouling.
    Brzozowska AM; Parra-Velandia FJ; Quintana R; Xiaoying Z; Lee SS; Chin-Sing L; Jańczewski D; Teo SL; Vancso JG
    Langmuir; 2014 Aug; 30(30):9165-75. PubMed ID: 25017490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.