BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22931191)

  • 1. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model.
    Walczak AP; Fokkink R; Peters R; Tromp P; Herrera Rivera ZE; Rietjens IM; Hendriksen PJ; Bouwmeester H
    Nanotoxicology; 2013 Nov; 7(7):1198-210. PubMed ID: 22931191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous characterisation of silver nanoparticles and determination of dissolved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry.
    Ramos K; Ramos L; Gómez-Gómez MM
    Food Chem; 2017 Apr; 221():822-828. PubMed ID: 27979280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry.
    Mwilu SK; El Badawy AM; Bradham K; Nelson C; Thomas D; Scheckel KG; Tolaymat T; Ma L; Rogers KR
    Sci Total Environ; 2013 Mar; 447():90-8. PubMed ID: 23376520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of
    Abdelkhaliq A; van der Zande M; Undas AK; Peters RJB; Bouwmeester H
    Nanotoxicology; 2020 Feb; 14(1):111-126. PubMed ID: 31648587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids.
    Pinďáková L; Kašpárková V; Kejlová K; Dvořáková M; Krsek D; Jírová D; Kašparová L
    Int J Pharm; 2017 Jul; 527(1-2):12-20. PubMed ID: 28506800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties.
    Dang F; Jiang Y; Li M; Zhong H; Peijnenburg WGM; Shi W; Zhou D
    Environ Pollut; 2018 Dec; 243(Pt A):364-373. PubMed ID: 30199811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi
    Cueva C; Gil-Sánchez I; Tamargo A; Miralles B; Crespo J; Bartolomé B; Moreno-Arribas MV
    Food Chem Toxicol; 2019 Oct; 132():110657. PubMed ID: 31276746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation.
    Chao JB; Liu JF; Yu SJ; Feng YD; Tan ZQ; Liu R; Yin YG
    Anal Chem; 2011 Sep; 83(17):6875-82. PubMed ID: 21797201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry.
    Battistel D; Baldi F; Gallo M; Faleri C; Daniele S
    Talanta; 2015 Jan; 132():294-300. PubMed ID: 25476311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.
    Zhao CM; Wang WX
    Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells.
    Böhmert L; Girod M; Hansen U; Maul R; Knappe P; Niemann B; Weidner SM; Thünemann AF; Lampen A
    Nanotoxicology; 2014 Sep; 8(6):631-42. PubMed ID: 23763544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications.
    Annadhasan M; SankarBabu VR; Naresh R; Umamaheswari K; Rajendiran N
    Colloids Surf B Biointerfaces; 2012 Aug; 96():14-21. PubMed ID: 22537720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent uptake of silver nanoparticles in Daphnia magna.
    Zhao CM; Wang WX
    Environ Sci Technol; 2012 Oct; 46(20):11345-51. PubMed ID: 22974052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS.
    Ramos K; Gómez-Gómez MM; Cámara C; Ramos L
    Talanta; 2016 May; 151():83-90. PubMed ID: 26946013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile synthesis of PHMB-stabilized silver nanoparticles and their significant stimulating effect on fodder beet (Beta vulgaris L.).
    Gusev AА; Kudrinsky AA; Zakharova OV; Klimov AI; Zherebin PM; Lisichkin GV; Vasyukova IA; Denisov AN; Krutyakov YA
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():152-9. PubMed ID: 26952409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma irradiation of cotton fabrics in AgNO₃ solution for preparation of antibacterial fabrics.
    Hanh TT; Van Phu D; Thu NT; Quoc le A; Duyen do NB; Hien NQ
    Carbohydr Polym; 2014 Jan; 101():1243-8. PubMed ID: 24299897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles.
    Laloux L; Kastrati D; Cambier S; Gutleb AC; Schneider YJ
    Small; 2020 May; 16(21):e1907687. PubMed ID: 32187880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid.
    Rogers KR; Bradham K; Tolaymat T; Thomas DJ; Hartmann T; Ma L; Williams A
    Sci Total Environ; 2012 Mar; 420():334-9. PubMed ID: 22330420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging and soil organic matter content affect the fate of silver nanoparticles in soil.
    Coutris C; Joner EJ; Oughton DH
    Sci Total Environ; 2012 Mar; 420():327-33. PubMed ID: 22326137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.
    Song JY; Kim BS
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):79-84. PubMed ID: 18438688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.