These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22931199)

  • 1. DNA cruciform arms nucleate through a correlated but asynchronous cooperative mechanism.
    Matek C; Ouldridge TE; Levy A; Doye JP; Louis AA
    J Phys Chem B; 2012 Sep; 116(38):11616-25. PubMed ID: 22931199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branch migration of Holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm.
    Ishida H
    J Comput Chem; 2010 Sep; 31(12):2317-29. PubMed ID: 20575014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The self-assembly of DNA Holliday junctions studied with a minimal model.
    Ouldridge TE; Johnston IG; Louis AA; Doye JP
    J Chem Phys; 2009 Feb; 130(6):065101. PubMed ID: 19222299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix-coil transition of a four-way DNA junction observed by multiple fluorescence parameters.
    Vámosi G; Clegg RM
    J Phys Chem B; 2008 Oct; 112(41):13136-48. PubMed ID: 18811195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range structural effects in supercoiled DNA: statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion.
    Schaeffer F; Yeramian E; Lilley DM
    Biopolymers; 1989 Aug; 28(8):1449-73. PubMed ID: 2752100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive superhelical transitions involving cruciform extrusion.
    Zhabinskaya D; Benham CJ
    Nucleic Acids Res; 2013 Nov; 41(21):9610-21. PubMed ID: 23969416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms.
    Singleton CK
    J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation.
    Ramreddy T; Sachidanandam R; Strick TR
    Nucleic Acids Res; 2011 May; 39(10):4275-83. PubMed ID: 21266478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a large double-cruciform DNA structure on the X chromosome of human and chimpanzee.
    Losch FO; Bredenbeck A; Hollstein VM; Walden P; Wrede P
    Hum Genet; 2007 Nov; 122(3-4):337-43. PubMed ID: 17638018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA.
    Panyutin I; Klishko V; Lyamichev V
    J Biomol Struct Dyn; 1984 Jun; 1(6):1311-24. PubMed ID: 6400822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA denaturation bubbles: free-energy landscape and nucleation/closure rates.
    Sicard F; Destainville N; Manghi M
    J Chem Phys; 2015 Jan; 142(3):034903. PubMed ID: 25612729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrusion of an imperfect palindrome to a cruciform in superhelical DNA: complete determination of energetics using a statistical mechanical model.
    Benham CJ; Savitt AG; Bauer WR
    J Mol Biol; 2002 Feb; 316(3):563-81. PubMed ID: 11866518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of supercoil-stabilized DNA cruciforms.
    Shlyakhtenko LS; Potaman VN; Sinden RR; Lyubchenko YL
    J Mol Biol; 1998 Jul; 280(1):61-72. PubMed ID: 9653031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic Monte Carlo method applied to nucleic acid hairpin folding.
    Sauerwine B; Widom M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061912. PubMed ID: 22304121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding kinetics of periodic DNA hairpins.
    Nostheide S; Holubec V; Chvosta P; Maass P
    J Phys Condens Matter; 2014 May; 26(20):205102. PubMed ID: 24785383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel unusual DNA structure formed in an inverted repeat sequence.
    Kato M; Matsunaga K; Shimizu N
    Biochem Biophys Res Commun; 1998 May; 246(2):532-4. PubMed ID: 9610396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Formation of noncanonical structures in superhelical DNA. Mutual effects of various transitions].
    Vologodskiĭ AV
    Mol Biol (Mosk); 1985; 19(3):687-92. PubMed ID: 4033641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of magnesium on cruciform extrusion in supercoiled DNA.
    Vologodskaia MY; Vologodskii AV
    J Mol Biol; 1999 Jun; 289(4):851-9. PubMed ID: 10369766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.