These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22931234)

  • 21. Inflated kinetic isotope effects in the branched mechanism of Neurospora crassa 2-nitropropane dioxygenase.
    Francis K; Gadda G
    Biochemistry; 2009 Mar; 48(11):2403-10. PubMed ID: 19199786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase.
    Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocatalytic enantioselective oxidative C-C coupling by aerobic C-H activation.
    Schrittwieser JH; Resch V; Sattler JH; Lienhart WD; Durchschein K; Winkler A; Gruber K; Macheroux P; Kroutil W
    Angew Chem Int Ed Engl; 2011 Feb; 50(5):1068-71. PubMed ID: 21268196
    [No Abstract]   [Full Text] [Related]  

  • 26. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic studies on the bovine liver mitochondrial dihydroorotate dehydrogenase using kinetic deuterium isotope effects.
    Hines V; Johnston M
    Biochemistry; 1989 Feb; 28(3):1227-34. PubMed ID: 2540820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the relative timing of hydrogen abstraction steps in the flavocytochrome b2 reaction with primary and solvent deuterium isotope effects and mutant enzymes.
    Sobrado P; Daubner SC; Fitzpatrick PF
    Biochemistry; 2001 Jan; 40(4):994-1001. PubMed ID: 11170421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the catalytic mechanism of choline oxidase.
    Fan F; Gadda G
    J Am Chem Soc; 2005 Feb; 127(7):2067-74. PubMed ID: 15713082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of enzymatic and acid-catalyzed decarboxylations of prephenate.
    Hermes JD; Tipton PA; Fisher MA; O'Leary MH; Morrison JF; Cleland WW
    Biochemistry; 1984 Dec; 23(25):6263-75. PubMed ID: 6395898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant.
    Bird DA; Facchini PJ
    Planta; 2001 Oct; 213(6):888-97. PubMed ID: 11722125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A.
    Miller JR; Edmondson DE
    Biochemistry; 1999 Oct; 38(41):13670-83. PubMed ID: 10521274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The single berberine bridge enzyme homolog of Physcomitrella patens is a cellobiose oxidase.
    Toplak M; Wiedemann G; Ulićević J; Daniel B; Hoernstein SNW; Kothe J; Niederhauser J; Reski R; Winkler A; Macheroux P
    FEBS J; 2018 May; 285(10):1923-1943. PubMed ID: 29633551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
    Patel MP; Blanchard JS
    Biochemistry; 2001 May; 40(17):5119-26. PubMed ID: 11318633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunocytological localization of two enzymes involved in berberine biosynthesis.
    Bock A; Wanner G; Zenk MH
    Planta; 2002 Nov; 216(1):57-63. PubMed ID: 12430014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH and deuterium isotope effects on the reaction of trimethylamine dehydrogenase with dimethylamine.
    Wanninayake US; Subedi B; Fitzpatrick PF
    Arch Biochem Biophys; 2019 Nov; 676():108136. PubMed ID: 31604072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction.
    Zafred D; Steiner B; Teufelberger AR; Hromic A; Karplus PA; Schofield CJ; Wallner S; Macheroux P
    FEBS J; 2015 Aug; 282(16):3060-74. PubMed ID: 25619330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.