These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
633 related articles for article (PubMed ID: 22931361)
1. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. Zhang Q; Li J; Shizu K; Huang S; Hirata S; Miyazaki H; Adachi C J Am Chem Soc; 2012 Sep; 134(36):14706-9. PubMed ID: 22931361 [TBL] [Abstract][Full Text] [Related]
2. Novel Carbazol-Pyridine-Carbonitrile Derivative as Excellent Blue Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Organic Light-Emitting Devices. Liu W; Zheng CJ; Wang K; Chen Z; Chen DY; Li F; Ou XM; Dong YP; Zhang XH ACS Appl Mater Interfaces; 2015 Sep; 7(34):18930-6. PubMed ID: 26289611 [TBL] [Abstract][Full Text] [Related]
3. Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole-triazine derivative. Serevičius T; Nakagawa T; Kuo MC; Cheng SH; Wong KT; Chang CH; Kwong RC; Xia S; Adachi C Phys Chem Chem Phys; 2013 Oct; 15(38):15850-5. PubMed ID: 23907636 [TBL] [Abstract][Full Text] [Related]
4. Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound. Wang S; Yan X; Cheng Z; Zhang H; Liu Y; Wang Y Angew Chem Int Ed Engl; 2015 Oct; 54(44):13068-72. PubMed ID: 26480338 [TBL] [Abstract][Full Text] [Related]
5. Achieving Efficient Blue Delayed Electrofluorescence by Shielding Acceptors with Carbazole Units. Cheng Z; Li Z; Xu Y; Liang J; Lin C; Wei J; Wang Y ACS Appl Mater Interfaces; 2019 Aug; 11(31):28096-28105. PubMed ID: 31290328 [TBL] [Abstract][Full Text] [Related]
6. Highly Twisted Donor-Acceptor Boron Emitter and High Triplet Host Material for Highly Efficient Blue Thermally Activated Delayed Fluorescent Device. Ahn DH; Lee H; Kim SW; Karthik D; Lee J; Jeong H; Lee JY; Kwon JH ACS Appl Mater Interfaces; 2019 Apr; 11(16):14909-14916. PubMed ID: 30924634 [TBL] [Abstract][Full Text] [Related]
7. Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet-Triplet Splitting With Large Fluorescence Rate. Liu J; Zhou K; Wang D; Deng C; Duan K; Ai Q; Zhang Q Front Chem; 2019; 7():312. PubMed ID: 31165054 [TBL] [Abstract][Full Text] [Related]
8. Highly Efficient Full-Color Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes: Extremely Low Efficiency Roll-Off Utilizing a Host with Small Singlet-Triplet Splitting. Zhang D; Zhao C; Zhang Y; Song X; Wei P; Cai M; Duan L ACS Appl Mater Interfaces; 2017 Feb; 9(5):4769-4777. PubMed ID: 28094502 [TBL] [Abstract][Full Text] [Related]
9. Cyanopyrimidine-Carbazole Hybrid Host Materials for High-Efficiency and Low-Efficiency Roll-Off TADF OLEDs. Li SW; Yu CH; Ko CL; Chatterjee T; Hung WY; Wong KT ACS Appl Mater Interfaces; 2018 Apr; 10(15):12930-12936. PubMed ID: 29600699 [TBL] [Abstract][Full Text] [Related]
10. New Benzimidazole-Based Bipolar Hosts: Highly Efficient Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Employing the Same Device Structure. Zhao Y; Wu C; Qiu P; Li X; Wang Q; Chen J; Ma D ACS Appl Mater Interfaces; 2016 Feb; 8(4):2635-43. PubMed ID: 26731494 [TBL] [Abstract][Full Text] [Related]
12. Optimizing Optoelectronic Properties of Pyrimidine-Based TADF Emitters by Changing the Substituent for Organic Light-Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Roll-Off. Wu K; Zhang T; Zhan L; Zhong C; Gong S; Jiang N; Lu ZH; Yang C Chemistry; 2016 Jul; 22(31):10860-6. PubMed ID: 27331374 [TBL] [Abstract][Full Text] [Related]
13. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative. Tanaka H; Shizu K; Miyazaki H; Adachi C Chem Commun (Camb); 2012 Dec; 48(93):11392-4. PubMed ID: 23059740 [TBL] [Abstract][Full Text] [Related]
14. Carbazole dendrimers as solution-processable thermally activated delayed-fluorescence materials. Albrecht K; Matsuoka K; Fujita K; Yamamoto K Angew Chem Int Ed Engl; 2015 May; 54(19):5677-82. PubMed ID: 25753430 [TBL] [Abstract][Full Text] [Related]
15. Tri-Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Li W; Li B; Cai X; Gan L; Xu Z; Li W; Liu K; Chen D; Su SJ Angew Chem Int Ed Engl; 2019 Aug; 58(33):11301-11305. PubMed ID: 31192492 [TBL] [Abstract][Full Text] [Related]
16. An Ultraviolet Thermally Activated Delayed Fluorescence OLED with Total External Quantum Efficiency over 9. Luo Y; Li S; Zhao Y; Li C; Pang Z; Huang Y; Yang M; Zhou L; Zheng X; Pu X; Lu Z Adv Mater; 2020 Aug; 32(32):e2001248. PubMed ID: 32618079 [TBL] [Abstract][Full Text] [Related]
17. Sky-Blue Thermally Activated Delayed Fluorescence with Intramolecular Spatial Charge Transfer Based on a Dibenzothiophene Sulfone Emitter. Yang SY; Tian QS; Yu YJ; Zou SN; Li HC; Khan A; Wu QH; Jiang ZQ; Liao LS J Org Chem; 2020 Aug; 85(16):10628-10637. PubMed ID: 32806105 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Deep Blue Fluorescent Organic Light-Emitting Diodes Boosted by Thermally Activated Delayed Fluorescence Sensitization. Ahn DH; Jeong JH; Song J; Lee JY; Kwon JH ACS Appl Mater Interfaces; 2018 Mar; 10(12):10246-10253. PubMed ID: 29498511 [TBL] [Abstract][Full Text] [Related]
19. Towards highly efficient red thermally activated delayed fluorescence materials by the control of intra-molecular π-π stacking interactions. Zhang Y; Zhang D; Cai M; Li Y; Zhang D; Qiu Y; Duan L Nanotechnology; 2016 Mar; 27(9):094001. PubMed ID: 26821694 [TBL] [Abstract][Full Text] [Related]
20. Solution-Processed Highly Efficient Bluish-Green Thermally Activated Delayed Fluorescence Emitter Bearing an Asymmetric Oxadiazole-Difluoroboron Double Acceptor. Zhou D; Liu D; Gong X; Ma H; Qian G; Gong S; Xie G; Zhu W; Wang Y ACS Appl Mater Interfaces; 2019 Jul; 11(27):24339-24348. PubMed ID: 31187977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]