BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2293209)

  • 1. Characterization of a hot-melt fluid bed coating process for fine granules.
    Jozwiakowski MJ; Jones DM; Franz RM
    Pharm Res; 1990 Nov; 7(11):1119-26. PubMed ID: 2293209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compritol 888 ATO: an innovative hot-melt coating agent for prolonged-release drug formulations.
    Barthelemy P; Laforêt JP; Farah N; Joachim J
    Eur J Pharm Biopharm; 1999 Jan; 47(1):87-90. PubMed ID: 10234531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of agglomerated carvedilol by hot-melt processes in a fluid bed and high shear granulator.
    Kukec S; Dreu R; Vrbanec T; Srčič S; Vrečer F
    Int J Pharm; 2012 Jul; 430(1-2):74-85. PubMed ID: 22486965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot air coating technique as a novel method to produce microparticles.
    Rodriguez L; Albertini B; Passerini N; Cavallari C; Giovannelli L
    Drug Dev Ind Pharm; 2004; 30(9):913-23. PubMed ID: 15554215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes.
    Kukec S; Hudovornik G; Dreu R; Vrečer F
    Drug Dev Ind Pharm; 2014 Jul; 40(7):952-9. PubMed ID: 23662716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation into the effect of formulation variables and process parameters on characteristics of granules obtained by in situ fluidized hot melt granulation.
    Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Durić Z
    Int J Pharm; 2012 Feb; 423(2):202-12. PubMed ID: 22197773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and optimization of a solid dispersion hot-melt fluid bed coating method.
    Kennedy JP; Niebergall PJ
    Pharm Dev Technol; 1996 Apr; 1(1):51-62. PubMed ID: 9552331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melt granulation in fluidized bed: a comparative study of spray-on versus in situ procedure.
    Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Srčič S
    Drug Dev Ind Pharm; 2014 Jan; 40(1):23-32. PubMed ID: 23294368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of process parameters to improve coating efficiency of an active tablet film-coating process.
    Wang J; Hemenway J; Chen W; Desai D; Early W; Paruchuri S; Chang SY; Stamato H; Varia S
    Int J Pharm; 2012 May; 427(2):163-9. PubMed ID: 22301427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of polyvinyl acetate dispersion as a sustained release polymer for tablets.
    Bordaweka MS; Zia H; Quadir A
    Drug Deliv; 2006; 13(2):121-31. PubMed ID: 16423800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving flow properties of ibuprofen by fluidized bed particle thin-coating.
    Ehlers H; Räikkönen H; Antikainen O; Heinämäki J; Yliruusi J
    Int J Pharm; 2009 Feb; 368(1-2):165-70. PubMed ID: 19010403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Preparation and evaluation of enteric-coated and taste masking clarithromycin granules].
    Zhang T; Wang CR; Shen S; Jin Y; Ge YR
    Yao Xue Xue Bao; 2011 Dec; 46(12):1520-5. PubMed ID: 22375429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced release of indomethacin from Pvp/stearic acid microcapsules prepared coupling Co-freeze-drying and ultrasound assisted spray-congealing process.
    Cavallari C; Luppi B; Di Pietra AM; Rodriguez L; Fini A
    Pharm Res; 2007 Mar; 24(3):521-9. PubMed ID: 17252191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot melt coating technology: influence of Compritol 888 Ato and granule size on chloroquine release.
    Faham A; Prinderre P; Piccerelle P; Farah N; Joachim J
    Pharmazie; 2000 Jun; 55(6):444-8. PubMed ID: 10907253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidization technologies: Aerodynamic principles and process engineering.
    Dixit R; Puthli S
    J Pharm Sci; 2009 Nov; 98(11):3933-60. PubMed ID: 19340888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of ICH Q9 Quality Risk Management Tools for Advanced Development of Hot Melt Coated Multiparticulate Systems.
    Stocker E; Becker K; Hate S; Hohl R; Schiemenz W; Sacher S; Zimmer A; Salar-Behzadi S
    J Pharm Sci; 2017 Jan; 106(1):278-290. PubMed ID: 27842971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of melt agglomeration process with a hydrophobic binder in combination with sucrose stearate.
    Heng PW; Wong TW; Cheong WS
    Eur J Pharm Sci; 2003 Aug; 19(5):381-93. PubMed ID: 12907289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot-melt coating with lipid excipients.
    Jannin V; Cuppok Y
    Int J Pharm; 2013 Dec; 457(2):480-7. PubMed ID: 23089578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solidification of cinnarizine self-nanoemulsifying drug delivery systems by fluid bed coating: optimization of the process and formulation variables.
    Shahba AA; Ahmed AR; Mohsin K; Abdel-Rahman SI; Alanazi FK
    Pharmazie; 2017 Mar; 72(3):143-151. PubMed ID: 29442049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging.
    Haaser M; Naelapää K; Gordon KC; Pepper M; Rantanen J; Strachan CJ; Taday PF; Zeitler JA; Rades T
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1095-102. PubMed ID: 23563103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.