These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2293237)
41. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis. Nesnow S; Nelson G; Padgett WT; George MH; Moore T; King LC; Adams LD; Ross JA Chem Biol Interact; 2010 Jul; 186(2):157-65. PubMed ID: 20346927 [TBL] [Abstract][Full Text] [Related]
42. Oxidative damage in chemical teratogenesis. Wells PG; Kim PM; Laposa RR; Nicol CJ; Parman T; Winn LM Mutat Res; 1997 Dec; 396(1-2):65-78. PubMed ID: 9434860 [TBL] [Abstract][Full Text] [Related]
43. Vitamin A status and metabolism of benzo[a]pyrene in the rat. Hauswirth JW Nutr Cancer; 1985; 7(1-2):53-8. PubMed ID: 4070009 [TBL] [Abstract][Full Text] [Related]
44. Cytochromes P4501 (CYP1): catalytic activities and inducibility by diesel exhaust particle extract and benzo[a]pyrene in intact human lung ex vivo. Iba MM; Shin M; Caccavale RJ Toxicology; 2010 Jun; 273(1-3):35-44. PubMed ID: 20435083 [TBL] [Abstract][Full Text] [Related]
45. Influence of red blood cells, serum albumin, and serum lipoproteins on the clearance of benzo[alpha]pyrene by isolated livers of 3-methylcholanthrene-treated rats. Wiersma DA; Stemmer PM; Roth RA Biochem Pharmacol; 1984 Nov; 33(21):3433-8. PubMed ID: 6497903 [TBL] [Abstract][Full Text] [Related]
46. Effect of bleomycin-induced fibrosis on pulmonary metabolism of selected xenobiotics. Pillai UA; Schlenk D; Frith C; Ferguson PW J La State Med Soc; 1994 Jun; 146(6):260-7. PubMed ID: 7520052 [TBL] [Abstract][Full Text] [Related]
47. The influence of flow on the metabolism of perfused benzo[a]pyrene by isolated rat lung. Wiersma DA; Braselton WE; Roth RA Chem Biol Interact; 1983 Jan; 43(1):1-15. PubMed ID: 6295648 [TBL] [Abstract][Full Text] [Related]
48. In Silico Simulation of Simultaneous Percutaneous Absorption and Xenobiotic Metabolism: Model Development and a Case Study on Aromatic Amines. Coleman L; Lian G; Glavin S; Sorrell I; Chen T Pharm Res; 2020 Nov; 37(12):241. PubMed ID: 33175239 [TBL] [Abstract][Full Text] [Related]
49. Pulmonary retention of [14C]benzo[a]pyrene in rats as influenced by the amount instilled. Medinsky MA; Kampcik SJ Toxicology; 1985 Jun; 35(4):327-36. PubMed ID: 4012800 [TBL] [Abstract][Full Text] [Related]
50. Kinetic modelling of in vitro cell-based assays to characterize non-specific bindings and ADME processes in a static and a perfused fluidic system. Ouattara DA; Choi SH; Sakai Y; Péry AR; Brochot C Toxicol Lett; 2011 Sep; 205(3):310-9. PubMed ID: 21723928 [TBL] [Abstract][Full Text] [Related]
51. Cytochrome P450 and xenobiotic receptor humanized mice. Gonzalez FJ; Yu AM Annu Rev Pharmacol Toxicol; 2006; 46():41-64. PubMed ID: 16402898 [TBL] [Abstract][Full Text] [Related]
52. Effects of dietary benzo(a) pyrene on intestinal phase I and phase II drug metabolizing systems in normal and vitamin A-deficient rats. Gupta PH; Mehta S; Mehta SK Biochem Int; 1989 Oct; 19(4):709-22. PubMed ID: 2619743 [TBL] [Abstract][Full Text] [Related]
53. Engineered yeast cells as model to study coupling between human xenobiotic metabolizing enzymes. Simulation of the two first steps of benzo[a]pyrene activation. Gautier JC; Urban P; Beaune P; Pompon D Eur J Biochem; 1993 Jan; 211(1-2):63-72. PubMed ID: 8425552 [TBL] [Abstract][Full Text] [Related]
54. Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Oesch F; Fabian E; Landsiedel R Arch Toxicol; 2019 Dec; 93(12):3419-3489. PubMed ID: 31673725 [TBL] [Abstract][Full Text] [Related]
55. Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells. Lin T; Yang MS Toxicology; 2007 Jun; 235(1-2):1-10. PubMed ID: 17416446 [TBL] [Abstract][Full Text] [Related]
56. Organ-selective induction of cytochrome P-450-dependent activities by indole-3-carbinol-derived products: influence on covalent binding of benzo[a]pyrene to hepatic and pulmonary DNA in the rat. Park JY; Bjeldanes LF Chem Biol Interact; 1992 Aug; 83(3):235-47. PubMed ID: 1516151 [TBL] [Abstract][Full Text] [Related]
57. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Boei JJWA; Vermeulen S; Klein B; Hiemstra PS; Verhoosel RM; Jennen DGJ; Lahoz A; Gmuender H; Vrieling H Arch Toxicol; 2017 May; 91(5):2093-2105. PubMed ID: 27738743 [TBL] [Abstract][Full Text] [Related]
58. Increasing exposure levels cause an abrupt change in the absorption and metabolism of acutely inhaled benzo(a)pyrene in the isolated, ventilated, and perfused lung of the rat. Ewing P; Blomgren B; Ryrfeldt A; Gerde P Toxicol Sci; 2006 Jun; 91(2):332-40. PubMed ID: 16415328 [TBL] [Abstract][Full Text] [Related]
59. Polycyclic aromatic hydrocarbon (PAH) metabolizing enzyme activities in human lung, and their inducibility by exposure to naphthalene, phenanthrene, pyrene, chrysene, and benzo(a)pyrene as shown in the rat lung and liver. Elovaara E; Mikkola J; Stockmann-Juvala H; Luukkanen L; Keski-Hynnilä H; Kostiainen R; Pasanen M; Pelkonen O; Vainio H Arch Toxicol; 2007 Mar; 81(3):169-82. PubMed ID: 16906435 [TBL] [Abstract][Full Text] [Related]
60. Some biotransformation enzymes responsible for polycyclic aromatic hydrocarbon metabolism in rat nasal turbinates: effects on enzyme activities of in vitro modifiers and intraperitoneal and inhalation exposure of rats to inducing agents. Bond JA Cancer Res; 1983 Oct; 43(10):4805-11. PubMed ID: 6309378 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]