These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22932701)

  • 1. A VASP-Rac-soluble guanylyl cyclase pathway controls cGMP production in adipocytes.
    Jennissen K; Siegel F; Liebig-Gonglach M; Hermann MR; Kipschull S; van Dooren S; Kunz WS; Fässler R; Pfeifer A
    Sci Signal; 2012 Aug; 5(239):ra62. PubMed ID: 22932701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of VASP phosphorylation in cardiac myocytes: differential regulation by cyclic nucleotides and modulation of protein expression in diabetic and hypertrophic heart.
    Sartoretto JL; Jin BY; Bauer M; Gertler FB; Liao R; Michel T
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1697-710. PubMed ID: 19734360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.
    Holt AW; Martin DN; Shaver PR; Adderley SP; Stone JD; Joshi CN; Francisco JT; Lust RM; Weidner DA; Shewchuk BM; Tulis DA
    Cell Signal; 2016 Sep; 28(9):1364-1379. PubMed ID: 27302407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Notch activation augments nitric oxide/soluble guanylyl cyclase signaling in immortalized ovarian surface epithelial cells and ovarian cancer cells.
    El-Sehemy A; Chang AC; Azad AK; Gupta N; Xu Z; Steed H; Karsan A; Fu Y
    Cell Signal; 2013 Dec; 25(12):2780-7. PubMed ID: 24041655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase G phosphorylates soluble guanylyl cyclase on serine 64 and inhibits its activity.
    Zhou Z; Sayed N; Pyriochou A; Roussos C; Fulton D; Beuve A; Papapetropoulos A
    Arterioscler Thromb Vasc Biol; 2008 Oct; 28(10):1803-10. PubMed ID: 18635821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume overload induces differential spatiotemporal regulation of myocardial soluble guanylyl cyclase in eccentric hypertrophy and heart failure.
    Liu Y; Dillon AR; Tillson M; Makarewich C; Nguyen V; Dell'Italia L; Sabri AK; Rizzo V; Tsai EJ
    J Mol Cell Cardiol; 2013 Jul; 60():72-83. PubMed ID: 23567617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble guanylyl cyclase activation with HMR1766 attenuates platelet activation in diabetic rats.
    Schäfer A; Flierl U; Kobsar A; Eigenthaler M; Ertl G; Bauersachs J
    Arterioscler Thromb Vasc Biol; 2006 Dec; 26(12):2813-8. PubMed ID: 17023677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia.
    Neo BH; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2295-304. PubMed ID: 21926339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance to the nitric oxide/cyclic guanosine 5'-monophosphate/protein kinase G pathway in vascular smooth muscle cells from the obese Zucker rat, a classical animal model of insulin resistance: role of oxidative stress.
    Russo I; Del Mese P; Doronzo G; Mattiello L; Viretto M; Bosia A; Anfossi G; Trovati M
    Endocrinology; 2008 Apr; 149(4):1480-9. PubMed ID: 18079207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.
    Irvine JC; Ganthavee V; Love JE; Alexander AE; Horowitz JD; Stasch JP; Kemp-Harper BK; Ritchie RH
    PLoS One; 2012; 7(11):e44481. PubMed ID: 23144773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and biochemical analysis of endothelial (dys)function and NO/cGMP signaling in human blood vessels with and without nitroglycerin pretreatment.
    Schulz E; Tsilimingas N; Rinze R; Reiter B; Wendt M; Oelze M; Woelken-Weckmüller S; Walter U; Reichenspurner H; Meinertz T; Münzel T
    Circulation; 2002 Mar; 105(10):1170-5. PubMed ID: 11889009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitroxyl (HNO) stimulates soluble guanylyl cyclase to suppress cardiomyocyte hypertrophy and superoxide generation.
    Lin EQ; Irvine JC; Cao AH; Alexander AE; Love JE; Patel R; McMullen JR; Kaye DM; Kemp-Harper BK; Ritchie RH
    PLoS One; 2012; 7(4):e34892. PubMed ID: 22506056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide- and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes.
    Sporbert A; Mertsch K; Smolenski A; Haseloff RF; Schönfelder G; Paul M; Ruth P; Walter U; Blasig IE
    Brain Res Mol Brain Res; 1999 Apr; 67(2):258-66. PubMed ID: 10216224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium azide, a bacteriostatic preservative contained in commercially available laboratory reagents, influences the responses of human platelets via the cGMP/PKG/VASP pathway.
    Russo I; Del Mese P; Viretto M; Doronzo G; Mattiello L; Trovati M; Anfossi G
    Clin Biochem; 2008 Mar; 41(4-5):343-9. PubMed ID: 18022387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins.
    Wang HG; Lu FM; Jin I; Udo H; Kandel ER; de Vente J; Walter U; Lohmann SM; Hawkins RD; Antonova I
    Neuron; 2005 Feb; 45(3):389-403. PubMed ID: 15694326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptor-controlled phosphorylation of alpha 1 soluble guanylyl cyclase enhances nitric oxide-dependent cyclic guanosine 5'-monophosphate production in pituitary cells.
    Kostic TS; Andric SA; Stojilkovic SS
    Mol Endocrinol; 2004 Feb; 18(2):458-70. PubMed ID: 14630997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of in vivo nitroglycerin treatment on activity and expression of the guanylyl cyclase and cGMP-dependent protein kinase and their downstream target vasodilator-stimulated phosphoprotein in aorta.
    Mülsch A; Oelze M; Klöss S; Mollnau H; Töpfer A; Smolenski A; Walter U; Stasch JP; Warnholtz A; Hink U; Meinertz T; Münzel T
    Circulation; 2001 May; 103(17):2188-94. PubMed ID: 11331261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired integrin-mediated adhesion contributes to reduced barrier properties in VASP-deficient microvascular endothelium.
    Schlegel N; Waschke J
    J Cell Physiol; 2009 Aug; 220(2):357-66. PubMed ID: 19347869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets.
    Becker EM; Schmidt P; Schramm M; Schröder H; Walter U; Hoenicka M; Gerzer R; Stasch JP
    J Cardiovasc Pharmacol; 2000 Mar; 35(3):390-7. PubMed ID: 10710123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasodilator-Stimulated Phosphoprotein: Regulators of Adipokines Resistin and Phenotype Conversion of Epicardial Adipocytes.
    Wang J; Jia Y; Wang L; Li D; Wang L; Zhu Y; Liu J; Gong J
    Med Sci Monit; 2018 Aug; 24():6010-6020. PubMed ID: 30156215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.