BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22933382)

  • 1. Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types.
    Pattani VP; Tunnell JW
    Lasers Surg Med; 2012 Oct; 44(8):675-84. PubMed ID: 22933382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials.
    Liu Y; Kangas J; Wang Y; Khosla K; Pasek-Allen J; Saunders A; Oldenburg S; Bischof J
    Nanoscale; 2020 Jun; 12(23):12346-12356. PubMed ID: 32490463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells.
    Ayala-Orozco C; Urban C; Knight MW; Urban AS; Neumann O; Bishnoi SW; Mukherjee S; Goodman AM; Charron H; Mitchell T; Shea M; Roy R; Nanda S; Schiff R; Halas NJ; Joshi A
    ACS Nano; 2014 Jun; 8(6):6372-81. PubMed ID: 24889266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light.
    Vankayala R; Lin CC; Kalluru P; Chiang CS; Hwang KC
    Biomaterials; 2014 Jul; 35(21):5527-38. PubMed ID: 24731706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal Therapy Employing Gold Nanoparticle- Loaded Macrophages as Delivery Vehicles: Comparing the Efficiency of Nanoshells Versus Nanorods.
    Christie C; Madsen SJ; Peng Q; Hirschberg H
    J Environ Pathol Toxicol Oncol; 2017; 36(3):229-235. PubMed ID: 29283336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments.
    Mackey MA; Ali MR; Austin LA; Near RD; El-Sayed MA
    J Phys Chem B; 2014 Feb; 118(5):1319-26. PubMed ID: 24433049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal dichalcogenide coated gold nanoshells for highly effective photothermal therapy.
    Bagheri S; Farokhnezhad M; Esmaeilzadeh M
    Phys Chem Chem Phys; 2023 Dec; 25(48):33038-33047. PubMed ID: 38037391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy.
    Kessentini S; Barchiesi D
    Biomed Opt Express; 2012 Mar; 3(3):590-604. PubMed ID: 22435104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy.
    Cheong SK; Krishnan S; Cho SH
    Med Phys; 2009 Oct; 36(10):4664-71. PubMed ID: 19928098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photothermal effects of gold nanorods in aqueous solution and gel media: Influence of particle size and excitation wavelength.
    Mbalaha ZS; Birch DJS; Chen Y
    IET Nanobiotechnol; 2023 Apr; 17(2):103-111. PubMed ID: 36544428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.
    Puvanakrishnan P; Park J; Chatterjee D; Krishnan S; Tunnell JW
    Int J Nanomedicine; 2012; 7():1251-8. PubMed ID: 22419872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for
    Shan B; Wang H; Li L; Zhou G; Wen Y; Chen M; Li M
    Theranostics; 2020; 10(25):11656-11672. PubMed ID: 33052239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endosomal Confinement of Gold Nanospheres, Nanorods, and Nanoraspberries Governs Their Photothermal Identity and Is Beneficial for Cancer Cell Therapy.
    Plan Sangnier A; Van de Walle A; Aufaure R; Fradet M; Motte L; Guénin E; Lalatonne Y; Wilhelm C
    Adv Biosyst; 2020 Apr; 4(4):e1900284. PubMed ID: 32293165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods.
    Cheng FY; Chen CT; Yeh CS
    Nanotechnology; 2009 Oct; 20(42):425104. PubMed ID: 19779243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient photothermal spectra of plasmonic nanobubbles.
    Lukianova-Hleb EY; Sassaroli E; Jones A; Lapotko DO
    Langmuir; 2012 Mar; 28(10):4858-66. PubMed ID: 22339620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a quantum nanocrystal-gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescence.
    Lin AY; Young JK; Nixon AV; Drezek RA
    Nanoscale; 2014 Sep; 6(18):10701-9. PubMed ID: 25096858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles.
    Yakunin AN; Avetisyan YA; Tuchin VV
    J Biomed Opt; 2015 May; 20(5):051030. PubMed ID: 25629389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.