BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 22933563)

  • 1. Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease.
    Michaelis S; Barrowman J
    Microbiol Mol Biol Rev; 2012 Sep; 76(3):626-51. PubMed ID: 22933563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae a-factor mutants reveal residues critical for processing, activity, and export.
    Huyer G; Kistler A; Nouvet FJ; George CM; Boyle ML; Michaelis S
    Eukaryot Cell; 2006 Sep; 5(9):1560-70. PubMed ID: 16963638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical studies of Zmpste24-deficient mice.
    Leung GK; Schmidt WK; Bergo MO; Gavino B; Wong DH; Tam A; Ashby MN; Michaelis S; Young SG
    J Biol Chem; 2001 Aug; 276(31):29051-8. PubMed ID: 11399759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel a-factor-related peptide of Saccharomyces cerevisiae that exits the cell by a Ste6p-independent mechanism.
    Chen P; Choi JD; Wang R; Cotter RJ; Michaelis S
    Mol Biol Cell; 1997 Jul; 8(7):1273-91. PubMed ID: 9243507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NH2-terminal processing of the yeast a-factor precursor.
    Fujimura-Kamada K; Nouvet FJ; Michaelis S
    J Cell Biol; 1997 Jan; 136(2):271-85. PubMed ID: 9015299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders.
    Barrowman J; Michaelis S
    Biol Chem; 2009 Aug; 390(8):761-73. PubMed ID: 19453269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Farnesylation and proteolysis are sequential, but distinct steps in the CaaX box modification pathway.
    Farh L; Mitchell DA; Deschenes RJ
    Arch Biochem Biophys; 1995 Apr; 318(1):113-21. PubMed ID: 7726551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity.
    Barrowman J; Wiley PA; Hudon-Miller SE; Hrycyna CA; Michaelis S
    Hum Mol Genet; 2012 Sep; 21(18):4084-93. PubMed ID: 22718200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Quantitative FRET Assay for the Upstream Cleavage Activity of the Integral Membrane Proteases Human ZMPSTE24 and Yeast Ste24.
    Hsu ET; Vervacke JS; Distefano MD; Hrycyna CA
    Methods Mol Biol; 2019; 2009():279-293. PubMed ID: 31152411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment.
    Barrowman J; Hamblet C; George CM; Michaelis S
    Mol Biol Cell; 2008 Dec; 19(12):5398-408. PubMed ID: 18923140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia.
    Agarwal AK; Fryns JP; Auchus RJ; Garg A
    Hum Mol Genet; 2003 Aug; 12(16):1995-2001. PubMed ID: 12913070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression studies of Saccharomyces cerevisiae reveal two distinct trypanosomatid CaaX protease activities and identify their potential targets.
    Mokry DZ; Manandhar SP; Chicola KA; Santangelo GM; Schmidt WK
    Eukaryot Cell; 2009 Dec; 8(12):1891-900. PubMed ID: 19820121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolytic processing of certain CaaX motifs can occur in the absence of the Rce1p and Ste24p CaaX proteases.
    Krishnankutty RK; Kukday SS; Castleberry AJ; Breevoort SR; Schmidt WK
    Yeast; 2009 Aug; 26(8):451-63. PubMed ID: 19504624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A humanized yeast system to analyze cleavage of prelamin A by ZMPSTE24.
    Spear ED; Alford RF; Babatz TD; Wood KM; Mossberg OW; Odinammadu K; Shilagardi K; Gray JJ; Michaelis S
    Methods; 2019 Mar; 157():47-55. PubMed ID: 30625386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific Disruption of Ras2 CAAX Proteolysis Alters Its Localization and Function.
    Ravishankar R; Hildebrandt ER; Greenway G; Asad N; Gore S; Dore TM; Schmidt WK
    Microbiol Spectr; 2023 Feb; 11(1):e0269222. PubMed ID: 36602340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenesis of the Saccharomyces cerevisiae mating pheromone a-factor.
    Chen P; Sapperstein SK; Choi JD; Michaelis S
    J Cell Biol; 1997 Jan; 136(2):251-69. PubMed ID: 9015298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans.
    Hsueh YP; Shen WC
    Eukaryot Cell; 2005 Jan; 4(1):147-55. PubMed ID: 15643070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of altered isoprenylation targets on a-factor export and bioactivity.
    Caldwell GA; Wang SH; Naider F; Becker JM
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1275-9. PubMed ID: 8108401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining mutations in the incoming and outgoing pheromone signal pathways causes a synergistic mating defect in Saccharomyces cerevisiae.
    Giot L; DeMattei C; Konopka JB
    Yeast; 1999 Jun; 15(9):765-80. PubMed ID: 10398345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome.
    Mallampalli MP; Huyer G; Bendale P; Gelb MH; Michaelis S
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14416-21. PubMed ID: 16186497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.