These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 22933805)

  • 41. Bilateral motor unit synchronization of leg muscles during a simple dynamic balance task.
    Boonstra TW; Daffertshofer A; Roerdink M; Flipse I; Groenewoud K; Beek PJ
    Eur J Neurosci; 2009 Feb; 29(3):613-22. PubMed ID: 19175407
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Early activation of arm and leg muscles following pulls to the waist during walking.
    Misiaszek JE
    Exp Brain Res; 2003 Aug; 151(3):318-29. PubMed ID: 12783148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Muscle synergy differences between voluntary and reactive backward stepping.
    Wang S; Varas-Diaz G; Bhatt T
    Sci Rep; 2021 Jul; 11(1):15462. PubMed ID: 34326376
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Muscle synergies during voluntary body sway: combining across-trials and within-a-trial analyses.
    Wang Y; Asaka T; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2006 Oct; 174(4):679-93. PubMed ID: 16710681
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Are Modular Activations Altered in Lower Limb Muscles of Persons with Multiple Sclerosis during Walking? Evidence from Muscle Synergies and Biomechanical Analysis.
    Lencioni T; Jonsdottir J; Cattaneo D; Crippa A; Gervasoni E; Rovaris M; Bizzi E; Ferrarin M
    Front Hum Neurosci; 2016; 10():620. PubMed ID: 28018193
    [No Abstract]   [Full Text] [Related]  

  • 46. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Age, Cognitive Task, and Arm Position Differently Affect Muscle Synergy Recruitment but have Similar Effects on Walking Balance.
    da Silva Costa AA; Hortobágyi T; den Otter R; Sawers A; Moraes R
    Neuroscience; 2023 Sep; 527():11-21. PubMed ID: 37437799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tuning of Muscle Synergies During Walking Along Rectilinear and Curvilinear Trajectories in Humans.
    Chia Bejarano N; Pedrocchi A; Nardone A; Schieppati M; Baccinelli W; Monticone M; Ferrigno G; Ferrante S
    Ann Biomed Eng; 2017 May; 45(5):1204-1218. PubMed ID: 28144794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Muscle modes and synergies during voluntary body sway.
    Danna-Dos-Santos A; Slomka K; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2007 Jun; 179(4):533-50. PubMed ID: 17221222
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules.
    Ranganathan R; Krishnan C; Dhaher YY; Rymer WZ
    J Biomech; 2016 Mar; 49(5):718-725. PubMed ID: 26916510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of feedback and feedforward strategies to locomotor adaptations.
    Lam T; Anderschitz M; Dietz V
    J Neurophysiol; 2006 Feb; 95(2):766-73. PubMed ID: 16424453
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies?
    Hug F; Turpin NA; Guével A; Dorel S
    J Appl Physiol (1985); 2010 Jun; 108(6):1727-36. PubMed ID: 20299611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Age-Related Modifications of Muscle Synergies and Their Temporal Activations for Overground Walking.
    Guo X; He B; Lau KYS; Chan PPK; Liu R; Xie JJ; Ha SCW; Chen CY; Cheing GLY; Cheung RTH; Chan RHM; Cheung VCK
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2700-2709. PubMed ID: 36107887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shared and specific muscle synergies in natural motor behaviors.
    d'Avella A; Bizzi E
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):3076-81. PubMed ID: 15708969
    [TBL] [Abstract][Full Text] [Related]  

  • 55. EMG responses to maintain stance during multidirectional surface translations.
    Henry SM; Fung J; Horak FB
    J Neurophysiol; 1998 Oct; 80(4):1939-50. PubMed ID: 9772251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modularity underlying the performance of unusual locomotor tasks inspired by developmental milestones.
    Hinnekens E; Berret B; Do MC; Teulier C
    J Neurophysiol; 2020 Feb; 123(2):496-510. PubMed ID: 31825715
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extracting synergies in gait: using EMG variability to evaluate control strategies.
    Ranganathan R; Krishnan C
    J Neurophysiol; 2012 Sep; 108(5):1537-44. PubMed ID: 22723678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stability of muscle synergies for voluntary actions after cortical stroke in humans.
    Cheung VC; Piron L; Agostini M; Silvoni S; Turolla A; Bizzi E
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19563-8. PubMed ID: 19880747
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modules in the brain stem and spinal cord underlying motor behaviors.
    Roh J; Cheung VC; Bizzi E
    J Neurophysiol; 2011 Sep; 106(3):1363-78. PubMed ID: 21653716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.