These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 22934130)
21. Silicatein: A Unique Silica-Synthesizing Catalytic Triad Hydrolase From Marine Sponge Skeletons and Its Multiple Applications. Shimizu K; Morse DE Methods Enzymol; 2018; 605():429-455. PubMed ID: 29909834 [TBL] [Abstract][Full Text] [Related]
22. Silicatein: nanobiotechnological and biomedical applications. Schröder HC; Schlossmacher U; Boreiko A; Natalio F; Baranowska M; Brandt D; Wang X; Tremel W; Wiens M; Müller WE Prog Mol Subcell Biol; 2009; 47():251-73. PubMed ID: 19198781 [TBL] [Abstract][Full Text] [Related]
23. Silicateins--a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica. Müller WE; Schröder HC; Burghard Z; Pisignano D; Wang X Chemistry; 2013 May; 19(19):5790-804. PubMed ID: 23512301 [TBL] [Abstract][Full Text] [Related]
24. Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. Schröder HC; Boreiko A; Korzhev M; Tahir MN; Tremel W; Eckert C; Ushijima H; Müller IM; Müller WE J Biol Chem; 2006 Apr; 281(17):12001-9. PubMed ID: 16495220 [TBL] [Abstract][Full Text] [Related]
25. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. Belton DJ; Deschaume O; Perry CC FEBS J; 2012 May; 279(10):1710-20. PubMed ID: 22333209 [TBL] [Abstract][Full Text] [Related]
26. Formation of silicones mediated by the sponge enzyme silicatein-α. Wolf SE; Schlossmacher U; Pietuch A; Mathiasch B; Schröder HC; Müller WE; Tremel W Dalton Trans; 2010 Oct; 39(39):9245-9. PubMed ID: 20396816 [TBL] [Abstract][Full Text] [Related]
27. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Cha JN; Shimizu K; Zhou Y; Christiansen SC; Chmelka BF; Stucky GD; Morse DE Proc Natl Acad Sci U S A; 1999 Jan; 96(2):361-5. PubMed ID: 9892638 [TBL] [Abstract][Full Text] [Related]
28. Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Müller WE; Wang X; Kropf K; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Wiens M Cell Tissue Res; 2008 Aug; 333(2):339-51. PubMed ID: 18516623 [TBL] [Abstract][Full Text] [Related]
29. Bacterial sensors based on biosilica immobilization for label-free OWLS detection. Adányi N; Bori Z; Szendrő I; Erdélyi K; Wang X; Schröder HC; Müller WE N Biotechnol; 2013 Jun; 30(5):493-9. PubMed ID: 23385329 [TBL] [Abstract][Full Text] [Related]
30. Silica condensation by a silicatein α homologue involves surface-induced transition to a stable structural intermediate forming a saturated monolayer. Patwardhan SV; Holt SA; Kelly SM; Kreiner M; Perry CC; van der Walle CF Biomacromolecules; 2010 Nov; 11(11):3126-35. PubMed ID: 20879760 [TBL] [Abstract][Full Text] [Related]
31. Primary structure and post-translational modifications of silicatein beta from the marine sponge Petrosia ficiformis (Poiret, 1789). Armirotti A; Damonte G; Pozzolini M; Mussino F; Cerrano C; Salis A; Benatti U; Giovine M J Proteome Res; 2009 Aug; 8(8):3995-4004. PubMed ID: 19522542 [TBL] [Abstract][Full Text] [Related]
32. [Progress in silicatein from sponges]. Cao X; Cao H; Yu X; Zhang W Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1882-6. PubMed ID: 20352963 [TBL] [Abstract][Full Text] [Related]
33. Facile fabrication of uniform silica films with tunable physical properties using silicatein protein from sponges. Rai A; Perry CC Langmuir; 2010 Mar; 26(6):4152-9. PubMed ID: 20000795 [TBL] [Abstract][Full Text] [Related]
35. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni. Wang X; Schröder HC; Müller WE Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903 [TBL] [Abstract][Full Text] [Related]
36. Silicatein: from chemical through enzymatic silica formation, to synthesis of biomimetic nanomaterials. Müller WE; Wang X FEBS J; 2012 May; 279(10):1709. PubMed ID: 22404956 [TBL] [Abstract][Full Text] [Related]
37. Biological glass fibers: correlation between optical and structural properties. Aizenberg J; Sundar VC; Yablon AD; Weaver JC; Chen G Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3358-63. PubMed ID: 14993612 [TBL] [Abstract][Full Text] [Related]
38. A synthetic biology approach for the fabrication of functional (fluorescent magnetic) bioorganic-inorganic hybrid materials in sponge primmorphs. Markl JS; Müller WEG; Sereno D; Elkhooly TA; Kokkinopoulou M; Gardères J; Depoix F; Wiens M Biotechnol Bioeng; 2020 Jun; 117(6):1789-1804. PubMed ID: 32068251 [TBL] [Abstract][Full Text] [Related]
39. Flexible minerals: self-assembled calcite spicules with extreme bending strength. Natalio F; Corrales TP; Panthöfer M; Schollmeyer D; Lieberwirth I; Müller WE; Kappl M; Butt HJ; Tremel W Science; 2013 Mar; 339(6125):1298-302. PubMed ID: 23493708 [TBL] [Abstract][Full Text] [Related]
40. Biosilica aging: from enzyme-driven gelation via syneresis to chemical/biochemical hardening. Wang X; Schröder HC; Schloßmacher U; Jiang L; Korzhev M; Müller WE Biochim Biophys Acta; 2013 Jun; 1830(6):3437-46. PubMed ID: 23428570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]