These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 22934531)
21. Ultraviolet absorbance titration for determining stability constants of humic substances with Cu(II) and Hg(II). Bai YC; Wu FC; Liu CQ; Li W; Guo JY; Fu PQ; Xing BS; Zheng J Anal Chim Acta; 2008 May; 616(1):115-21. PubMed ID: 18471492 [TBL] [Abstract][Full Text] [Related]
22. Microscopic level investigation of Ni(II) sorption on Na-rectorite by EXAFS technique combined with statistical F-tests. Ren X; Yang S; Hu F; He B; Xu J; Tan X; Wang X J Hazard Mater; 2013 May; 252-253():2-10. PubMed ID: 23500786 [TBL] [Abstract][Full Text] [Related]
23. Chemodynamics of metal ion complexation by charged nanoparticles: a dimensionless rationale for soft, core-shell and hard particle types. Duval JFL Phys Chem Chem Phys; 2017 May; 19(19):11802-11815. PubMed ID: 28447689 [TBL] [Abstract][Full Text] [Related]
24. Investigation of metal ions binding of humic substances using fluorescence emission and synchronous-scan spectroscopy. Piana MJ; Zahir KO J Environ Sci Health B; 2000 Jan; 35(1):87-102. PubMed ID: 10693057 [TBL] [Abstract][Full Text] [Related]
25. Assessing the trihalomethane formation potential of aquatic fulvic and humic acids fractionated using thin-layer chromatography. Eish MY; Wells MJ J Chromatogr A; 2006 May; 1116(1-2):272-6. PubMed ID: 16620862 [TBL] [Abstract][Full Text] [Related]
26. A speciation methodology to study the contributions of humic-like and fulvic-like acids to the mobilization of metals from compost using size exclusion chromatography-ultraviolet absorption-inductively coupled plasma mass spectrometry and deconvolution analysis. Laborda F; Bolea E; Górriz MP; Martín-Ruiz MP; Ruiz-Beguería S; Castillo JR Anal Chim Acta; 2008 Jan; 606(1):1-8. PubMed ID: 18068764 [TBL] [Abstract][Full Text] [Related]
27. The Intrinsic Stability of Metal Ion Complexes with Nanoparticulate Fulvic Acids. Town RM; Duval JFL; van Leeuwen HP Environ Sci Technol; 2018 Oct; 52(20):11682-11690. PubMed ID: 30226375 [TBL] [Abstract][Full Text] [Related]
28. 1,4,7,10-tetraazacyclododecane metal complexes as potent promoters of carboxyester hydrolysis under physiological conditions. Subat M; Woinaroschy K; Anthofer S; Malterer B; König B Inorg Chem; 2007 May; 46(10):4336-56. PubMed ID: 17444638 [TBL] [Abstract][Full Text] [Related]
29. Modeling kinetics of Ni dissociation from humic substances based on WHAM 7. Wang P; Ding Y; Liu M; Liang Y; Shi Z Chemosphere; 2019 Apr; 221():254-262. PubMed ID: 30640008 [TBL] [Abstract][Full Text] [Related]
30. Metal speciation in a complexing soft film layer: a theoretical dielectric relaxation study of coupled chemodynamic and electrodynamic interfacial processes. Merlin J; Duval JF Phys Chem Chem Phys; 2012 Apr; 14(13):4491-504. PubMed ID: 22370713 [TBL] [Abstract][Full Text] [Related]
31. Metal flux and dynamic speciation at (bio)interfaces. Part I: Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Buffle J; Zhang Z; Startchev K Environ Sci Technol; 2007 Nov; 41(22):7609-20. PubMed ID: 18075065 [TBL] [Abstract][Full Text] [Related]
32. Fluorescence behaviour of Zn and Ni complexes of humic acids from different sources. Provenzano MR; D'Orazio V; Jerzykiewicz M; Senesi N Chemosphere; 2004 May; 55(6):885-92. PubMed ID: 15041293 [TBL] [Abstract][Full Text] [Related]
33. Investigation of trace metal binding properties of lignin by diffusive gradients in thin films. Hojaji E Chemosphere; 2012 Sep; 89(3):319-26. PubMed ID: 22608133 [TBL] [Abstract][Full Text] [Related]
34. 2H NMR study of dynamics of benzene-d6 interacting with humic and fulvic acids. Eastman MA; Brothers LA; Nanny MA J Phys Chem A; 2011 May; 115(17):4359-72. PubMed ID: 21456559 [TBL] [Abstract][Full Text] [Related]
35. Effect of pH and ionic strength on the binding of paraquat and MCPA by soil fulvic and humic acids. Iglesias A; López R; Gondar D; Antelo J; Fiol S; Arce F Chemosphere; 2009 Jun; 76(1):107-13. PubMed ID: 19269671 [TBL] [Abstract][Full Text] [Related]
36. TiO(2)-assisted photocatalytic degradation of humic acids: effect of copper ions. Uyguner CS; Bekbolet M Water Sci Technol; 2010; 61(10):2581-90. PubMed ID: 20453331 [TBL] [Abstract][Full Text] [Related]
37. Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease. Li Y; Tan W; Koopal LK; Wang M; Liu F; Norde W Environ Sci Technol; 2013 May; 47(10):5050-6. PubMed ID: 23614609 [TBL] [Abstract][Full Text] [Related]
38. In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability. Soler-Rovira P; Madejón E; Madejón P; Plaza C Chemosphere; 2010 May; 79(8):844-9. PubMed ID: 20303567 [TBL] [Abstract][Full Text] [Related]
39. Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials. Jones EH; Su C Water Res; 2012 May; 46(7):2445-56. PubMed ID: 22386886 [TBL] [Abstract][Full Text] [Related]
40. Stability constants of metal-humic acid complexes and its role in environmental detoxification. Pandey AK; Pandey SD; Misra V Ecotoxicol Environ Saf; 2000 Oct; 47(2):195-200. PubMed ID: 11023698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]