These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22934976)

  • 41. Colloidosomes from the controlled interaction of submicrometer triglyceride droplets and hydrophilic silica nanoparticles.
    Simovic S; Prestidge CA
    Langmuir; 2008 Jul; 24(14):7132-7. PubMed ID: 18547083
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A plug-and-play modular microcapillary platform for the generation of multicompartmental double emulsions using glass or fluorocarbon capillaries.
    Farley S; Ramsay K; Elvira KS
    Lab Chip; 2021 Jul; 21(14):2781-2790. PubMed ID: 34105568
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic Generation of Particle-Stabilized Water-in-Water Emulsions.
    Abbasi N; Navi M; Tsai SSH
    Langmuir; 2018 Jan; 34(1):213-218. PubMed ID: 29231744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Patterned Plasmonic Nanoparticle Arrays for Microfluidic and Multiplexed Biological Assays.
    He J; Boegli M; Bruzas I; Lum W; Sagle L
    Anal Chem; 2015 Nov; 87(22):11407-14. PubMed ID: 26494412
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidics Assisted Fabrication of Three-Tier Hierarchical Microparticles for Constructing Bioinspired Surfaces.
    Wang J; Le-The H; Wang Z; Li H; Jin M; van den Berg A; Zhou G; Segerink LI; Shui L; Eijkel JCT
    ACS Nano; 2019 Mar; 13(3):3638-3648. PubMed ID: 30856322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional patterning of PDMS microfluidic devices using integrated chemo-masks.
    Romanowsky MB; Heymann M; Abate AR; Krummel AT; Fraden S; Weitz DA
    Lab Chip; 2010 Jun; 10(12):1521-4. PubMed ID: 20454730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing.
    Bandulasena MV; Vladisavljević GT; Benyahia B
    J Colloid Interface Sci; 2019 Apr; 542():23-32. PubMed ID: 30721833
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.
    Peyman SA; Kwan EY; Margarson O; Iles A; Pamme N
    J Chromatogr A; 2009 Dec; 1216(52):9055-62. PubMed ID: 19592004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions.
    Deng NN; Meng ZJ; Xie R; Ju XJ; Mou CL; Wang W; Chu LY
    Lab Chip; 2011 Dec; 11(23):3963-9. PubMed ID: 22025190
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Complex colloidal microclusters from aerosol droplets.
    Cho YS; Yi GR; Chung YS; Park SB; Yang SM
    Langmuir; 2007 Nov; 23(24):12079-85. PubMed ID: 17944498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles.
    Lorenz T; Bojko S; Bunjes H; Dietzel A
    Lab Chip; 2018 Feb; 18(4):627-638. PubMed ID: 29345261
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coaxial flow focusing in poly(dimethylsiloxane) microfluidic devices.
    Tran TM; Cater S; Abate AR
    Biomicrofluidics; 2014 Jan; 8(1):016502. PubMed ID: 24753732
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip.
    Priest C; Reid MD; Whitby CP
    J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic control of the coverage of oil droplets by DNA-functionalized colloids.
    Joshi D; Bargteil D; Caciagli A; Burelbach J; Xing Z; Nunes AS; Pinto DE; Araújo NA; Brujic J; Eiser E
    Sci Adv; 2016 Aug; 2(8):e1600881. PubMed ID: 27532053
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.
    Othman R; Vladisavljević GT; Thomas NL; Nagy ZK
    Colloids Surf B Biointerfaces; 2016 May; 141():187-195. PubMed ID: 26852102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Versatile microfluidic droplets array for bioanalysis.
    Hu SW; Xu BY; Ye WK; Xia XH; Chen HY; Xu JJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):935-40. PubMed ID: 25525675
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Segregation of Dispersed Silica Nanoparticles in Microfluidic Water-in-Oil Droplets: A Kinetic Study.
    Sheshachala S; Grösche M; Scherr T; Hu Y; Sun P; Bartschat A; Mikut R; Niemeyer CM
    Chemphyschem; 2020 May; 21(10):1070-1078. PubMed ID: 32142187
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic Devices for Characterizing Pore-scale Event Processes in Porous Media for Oil Recovery Applications.
    Vavra ED; Zeng Y; Xiao S; Hirasaki GJ; Biswal SL
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaporation-induced particle microseparations inside droplets floating on a chip.
    Chang ST; Velev OD
    Langmuir; 2006 Feb; 22(4):1459-68. PubMed ID: 16460062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.