These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22935053)

  • 1. How close can one approach the Dirac point in graphene experimentally?
    Mayorov AS; Elias DC; Mukhin IS; Morozov SV; Ponomarenko LA; Novoselov KS; Geim AK; Gorbachev RV
    Nano Lett; 2012 Sep; 12(9):4629-34. PubMed ID: 22935053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier multiplication in graphene under Landau quantization.
    Wendler F; Knorr A; Malic E
    Nat Commun; 2014 Apr; 5():3703. PubMed ID: 24739418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar Dirac electrons in magnetic quantum dots.
    Yang N; Zhu JL
    J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-field electrical and thermal transport in suspended graphene.
    Dorgan VE; Behnam A; Conley HJ; Bolotin KI; Pop E
    Nano Lett; 2013 Oct; 13(10):4581-6. PubMed ID: 23387323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant magnetoresistance of Dirac plasma in high-mobility graphene.
    Xin N; Lourembam J; Kumaravadivel P; Kazantsev AE; Wu Z; Mullan C; Barrier J; Geim AA; Grigorieva IV; Mishchenko A; Principi A; Fal'ko VI; Ponomarenko LA; Geim AK; Berdyugin AI
    Nature; 2023 Apr; 616(7956):270-274. PubMed ID: 37045919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band gap opening of graphene by doping small boron nitride domains.
    Fan X; Shen Z; Liu AQ; Kuo JL
    Nanoscale; 2012 Mar; 4(6):2157-65. PubMed ID: 22344594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field.
    Guo D; Kondo T; Machida T; Iwatake K; Okada S; Nakamura J
    Nat Commun; 2012; 3():1068. PubMed ID: 22990864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface potentials and layer charge distributions in few-layer graphene films.
    Datta SS; Strachan DR; Mele EJ; Johnson AT
    Nano Lett; 2009 Jan; 9(1):7-11. PubMed ID: 18613730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions.
    Kumaravadivel P; Du X
    Sci Rep; 2016 Apr; 6():24274. PubMed ID: 27080733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact and edge effects in graphene devices.
    Lee EJ; Balasubramanian K; Weitz RT; Burghard M; Kern K
    Nat Nanotechnol; 2008 Aug; 3(8):486-90. PubMed ID: 18685636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron spin resonance in presence of a magnetic impurity in graphene.
    Ghosh A; Pinto JW; Frota HO
    J Magn Reson; 2013 Feb; 227():87-92. PubMed ID: 23314256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum behavior of graphene transistors near the scaling limit.
    Wu Y; Perebeinos V; Lin YM; Low T; Xia F; Avouris P
    Nano Lett; 2012 Mar; 12(3):1417-23. PubMed ID: 22316333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities.
    Jung HS; Tsai HZ; Wong D; Germany C; Kahn S; Kim Y; Aikawa AS; Desai DK; Rodgers GF; Bradley AJ; Velasco J; Watanabe K; Taniguchi T; Wang F; Zettl A; Crommie MF
    J Vis Exp; 2015 Jul; (101):e52711. PubMed ID: 26273961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric double-layer capacitance between an ionic liquid and few-layer graphene.
    Uesugi E; Goto H; Eguchi R; Fujiwara A; Kubozono Y
    Sci Rep; 2013; 3():1595. PubMed ID: 23549208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandgap opening in graphene antidot lattices: the missing half.
    Ouyang F; Peng S; Liu Z; Liu Z
    ACS Nano; 2011 May; 5(5):4023-30. PubMed ID: 21513306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bias free gap creation in bilayer graphene.
    Davenport AR; Hague JP
    J Phys Condens Matter; 2014 Jun; 26(22):225601. PubMed ID: 24824315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bipolar supercurrent in graphene.
    Heersche HB; Jarillo-Herrero P; Oostinga JB; Vandersypen LM; Morpurgo AF
    Nature; 2007 Mar; 446(7131):56-9. PubMed ID: 17330038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition.
    Behnam A; Lyons AS; Bae MH; Chow EK; Islam S; Neumann CM; Pop E
    Nano Lett; 2012 Sep; 12(9):4424-30. PubMed ID: 22853618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic field barriers in graphene: an analytically solvable model.
    Milpas E; Torres M; MurguĂ­a G
    J Phys Condens Matter; 2011 Jun; 23(24):245304. PubMed ID: 21628785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.