These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 22935690)

  • 1. Impact of stone characteristics on cavitation in burst wave lithotripsy.
    Hunter C; Cunitz B; Dunmire B; Bailey M; Randad A; Kreider W; Maxwell AD; Sorensen MD; Williams JC
    Proc Meet Acoust; 2018 Nov; 35(1):. PubMed ID: 32612739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Assessment of Three Clinical Lithotripters Employing Different Shock Wave Generators.
    Faragher SR; Cleveland RO; Kumar S; Wiseman OJ; Turney BW
    J Endourol; 2016 May; 30(5):560-5. PubMed ID: 26918374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency shock wave lithotripsy: stone comminution and evaluation of renal parenchyma injury in a porcine ex-vivo model.
    Rassweiler-Seyfried MC; Mayer J; Goldenstedt C; Storz R; Marlinghaus E; Heine G; Alken P; Rassweiler JJ
    World J Urol; 2023 Jul; 41(7):1929-1934. PubMed ID: 37284842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic Lithotripsy: Near-Infrared Laser Activated Nanomaterials for Kidney Stone Comminution.
    Houlihan I; Kang B; De S; Krishna V
    Nano Lett; 2023 Jul; 23(13):5981-5988. PubMed ID: 37358929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field.
    Biasiori-Poulanges L; Lukić B; Supponen O
    Ultrason Sonochem; 2024 Jan; 102():106738. PubMed ID: 38150955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the Acoustic Output of an Ultrasonic Propulsion Device for Urinary Stones.
    Cunitz BW; Dunmire B; Bailey MR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1818-1827. PubMed ID: 28981413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GeoBioMed perspectives on kidney stone recurrence from the reactive surface area of SWL-derived particles.
    Todorov LG; Sivaguru M; Krambeck AE; Lee MS; Lieske JC; Fouke BW
    Sci Rep; 2022 Nov; 12(1):18371. PubMed ID: 36319741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations of stress field and stone fracture produced at different lateral locations in a shockwave lithotripter field.
    Xiang G; Ma X; Liang C; Yu H; Liao D; Sankin G; Cao S; Wang K; Zhong P
    J Acoust Soc Am; 2021 Aug; 150(2):1013. PubMed ID: 34470261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock-Induced Damage and Dynamic Fracture in Cylindrical Bodies Submerged in Liquid.
    Cao S; Zhang Y; Liao D; Zhong P; Wang KG
    Int J Solids Struct; 2019 Sep; 169():55-71. PubMed ID: 31423024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Broad vs Narrow Focal Width Lithotripter Fields.
    Xing Y; Chen TT; Simmons WN; Sankin G; Cocks FH; Lipkin ME; Preminger GM; Zhong P
    J Endourol; 2017 May; 31(5):502-509. PubMed ID: 28340536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shock wave lithotripsy: the new phoenix?
    Neisius A; Lipkin ME; Rassweiler JJ; Zhong P; Preminger GM; Knoll T
    World J Urol; 2015 Feb; 33(2):213-21. PubMed ID: 25081010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter.
    Neisius A; Smith NB; Sankin G; Kuntz NJ; Madden JF; Fovargue DE; Mitran S; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):E1167-75. PubMed ID: 24639497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy.
    Smith N; Zhong P
    J Biomech; 2012 Oct; 45(15):2520-5. PubMed ID: 22935690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy.
    Zhang Y; Nault I; Mitran S; Iversen ES; Zhong P
    Ultrasound Med Biol; 2016 Nov; 42(11):2662-2675. PubMed ID: 27515177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A heuristic model of stone comminution in shock wave lithotripsy.
    Smith NB; Zhong P
    J Acoust Soc Am; 2013 Aug; 134(2):1548-58. PubMed ID: 23927195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Extra corporeal shock wave lithotripsy (ESWL) procedure in urology].
    Doré B
    Ann Urol (Paris); 2005; 39(3-4):137-58. PubMed ID: 16302706
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.