These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22935690)

  • 1. Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy.
    Smith N; Zhong P
    J Biomech; 2012 Oct; 45(15):2520-5. PubMed ID: 22935690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy.
    Zhang Y; Nault I; Mitran S; Iversen ES; Zhong P
    Ultrasound Med Biol; 2016 Nov; 42(11):2662-2675. PubMed ID: 27515177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A heuristic model of stone comminution in shock wave lithotripsy.
    Smith NB; Zhong P
    J Acoust Soc Am; 2013 Aug; 134(2):1548-58. PubMed ID: 23927195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
    Zhu S; Cocks FH; Preminger GM; Zhong P
    Ultrasound Med Biol; 2002 May; 28(5):661-71. PubMed ID: 12079703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model.
    Mancini JG; Neisius A; Smith N; Sankin G; Astroza GM; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    J Urol; 2013 Sep; 190(3):1096-101. PubMed ID: 23485509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.
    Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL
    J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulent water coupling in shock wave lithotripsy.
    Lautz J; Sankin G; Zhong P
    Phys Med Biol; 2013 Feb; 58(3):735-48. PubMed ID: 23322027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Broad vs Narrow Focal Width Lithotripter Fields.
    Xing Y; Chen TT; Simmons WN; Sankin G; Cocks FH; Lipkin ME; Preminger GM; Zhong P
    J Endourol; 2017 May; 31(5):502-509. PubMed ID: 28340536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
    Randad A; Ahn J; Bailey MR; Kreider W; Harper JD; Sorensen MD; Maxwell AD
    J Endourol; 2019 May; 33(5):400-406. PubMed ID: 30595048
    [No Abstract]   [Full Text] [Related]  

  • 16. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lithotripter focal width on stone comminution in shock wave lithotripsy.
    Qin J; Simmons WN; Sankin G; Zhong P
    J Acoust Soc Am; 2010 Apr; 127(4):2635-45. PubMed ID: 20370044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Apr; 23(4):693-7. PubMed ID: 19335160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage.
    Lokhandwalla M; Sturtevant B
    Phys Med Biol; 2000 Jul; 45(7):1923-40. PubMed ID: 10943929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2003 Jan; 113(1):586-97. PubMed ID: 12558294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.