These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22935690)

  • 21. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
    Cleveland RO; Sapozhnikov OA
    J Acoust Soc Am; 2005 Oct; 118(4):2667-76. PubMed ID: 16266186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progressive increase of lithotripter output produces better in-vivo stone comminution.
    Maloney ME; Marguet CG; Zhou Y; Kang DE; Sung JC; Springhart WP; Madden J; Zhong P; Preminger GM
    J Endourol; 2006 Sep; 20(9):603-6. PubMed ID: 16999607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model.
    Maxwell AD; Wang YN; Kreider W; Cunitz BW; Starr F; Lee D; Nazari Y; Williams JC; Bailey MR; Sorensen MD
    J Endourol; 2019 Oct; 33(10):787-792. PubMed ID: 31016998
    [No Abstract]   [Full Text] [Related]  

  • 25. A new optical coupling control technique and application in SWL.
    Lv JL
    Urolithiasis; 2016 Nov; 44(6):539-544. PubMed ID: 27025864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter.
    Neisius A; Smith NB; Sankin G; Kuntz NJ; Madden JF; Fovargue DE; Mitran S; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):E1167-75. PubMed ID: 24639497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of bubble cavitation by modifying the diffraction wave from a lithotripter aperture.
    Zhou Y
    J Endourol; 2012 Aug; 26(8):1075-84. PubMed ID: 22332839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of ultrasound-assisted and pure fluoroscopy-guided extracorporeal shockwave lithotripsy for renal stones.
    Chang TH; Lin WR; Tsai WK; Chiang PK; Chen M; Tseng JS; Chiu AW
    BMC Urol; 2020 Nov; 20(1):183. PubMed ID: 33172476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Urolithiasis--a change in therapeutic methods extracorporeal shock wave lithotripsy using a Dornier kidney lithotripter HM3].
    Yamamoto K; Kishimoto T; Sakamoto W; Sugimoto T; Iimori H; Kanasawa T; Wada S; Senju M; Nakatani T; Sugimura K
    Hinyokika Kiyo; 1989 Dec; 35(12):2093-8. PubMed ID: 2618909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shock wave lithotripsy for uric acid stones.
    Sun XZ; Zhang ZW
    Asian J Surg; 2006 Jan; 29(1):36-9. PubMed ID: 16428097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments.
    Xi X; Zhong P
    Ultrasound Med Biol; 2000 Mar; 26(3):457-67. PubMed ID: 10773377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.
    Loske AM; Prieto FE; Fernandez F; van Cauwelaert J
    Phys Med Biol; 2002 Nov; 47(22):3945-57. PubMed ID: 12476975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Third prize: the impact of fluid environment manipulation on shockwave lithotripsy artificial calculi fragmentation rates.
    Méndez-Probst CE; Fernadez A; Erdeljan P; Vanjecek M; Cadieux PA; Razvi H
    J Endourol; 2011 Mar; 25(3):397-401. PubMed ID: 21401394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro comminution of model renal calculi using histotripsy.
    Duryea AP; Maxwell AD; Roberts WW; Xu Z; Hall TL; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):971-80. PubMed ID: 21622053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of chemical treatments for improved comminution of artificial stones.
    Heimbach D; Kourambas J; Zhong P; Jacobs J; Hesse A; Mueller SC; Delvecchio FC; Cocks FH; Preminger GM
    J Urol; 2004 May; 171(5):1797-801. PubMed ID: 15076279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-frequency setting for urinary stone fragmentation during shock wave lithotripsy: an in vitro study.
    Han CS; Vetter JM; Endicott R; Chevinsky M; Zafar A; Venkatesh R
    Urolithiasis; 2020 Aug; 48(4):369-375. PubMed ID: 31624905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Innovations in shock wave lithotripsy technology: updates in experimental studies.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Nov; 172(5 Pt 1):1892-8. PubMed ID: 15540748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size and location of defects at the coupling interface affect lithotripter performance.
    Li G; Williams JC; Pishchalnikov YA; Liu Z; McAteer JA
    BJU Int; 2012 Dec; 110(11 Pt C):E871-7. PubMed ID: 22938566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced High-Rate Shockwave Lithotripsy Stone Comminution in an In Vivo Porcine Model Using Acoustic Bubble Coalescence.
    Alavi Tamaddoni H; Roberts WW; Duryea AP; Cain CA; Hall TL
    J Endourol; 2016 Dec; 30(12):1321-1325. PubMed ID: 27762629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.