These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy. Dogan HS; Altan M; Citamak B; Bozaci AC; Karabulut E; Tekgul S J Pediatr Urol; 2015 Apr; 11(2):84.e1-6. PubMed ID: 25812469 [TBL] [Abstract][Full Text] [Related]
46. A mechanistic analysis of stone fracture in lithotripsy. Sapozhnikov OA; Maxwell AD; MacConaghy B; Bailey MR J Acoust Soc Am; 2007 Feb; 121(2):1190-202. PubMed ID: 17348540 [TBL] [Abstract][Full Text] [Related]
47. Effect of output voltage distribution on stone comminution efficiency during shockwave lithotripsy in renal or ureteropelvic junction stones: a preliminary study. You D; Park J; Hong B; Park HK Scand J Urol Nephrol; 2010 Sep; 44(4):236-41. PubMed ID: 20446817 [TBL] [Abstract][Full Text] [Related]
48. [Increased fragmentation efficiency by enhancement of cavitation for extracorporal shock wave lithotripsy]. Loske AM; Fernández F; Gutiérrez J Z Med Phys; 2005; 15(1):53-8. PubMed ID: 15830785 [TBL] [Abstract][Full Text] [Related]
49. What makes a shock wave efficient in lithotripsy? Granz B; Köhler G J Stone Dis; 1992 Apr; 4(2):123-8. PubMed ID: 10149177 [TBL] [Abstract][Full Text] [Related]
50. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Canseco G; de Icaza-Herrera M; Fernández F; Loske AM Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398 [TBL] [Abstract][Full Text] [Related]
52. Shock Wave Lithotripsy in Pediatric Stone Disease: A 15-Year Single-Center Experience with 2 Types of Lithotripters. Zisman A; Assadi A; Goldin O; Malshy K; Nativ O; Meretyk S; Amiel GE; Mullerad M; Livne PM Urol Int; 2022; 106(12):1260-1264. PubMed ID: 35172318 [TBL] [Abstract][Full Text] [Related]
53. Comparison of an electromagnetic and an electrohydraulic lithotripter: Efficacy, pain and complications. Bianchi G; Marega D; Knez R; Bucci S; Trombetta C Arch Ital Urol Androl; 2018 Sep; 90(3):169-171. PubMed ID: 30362681 [TBL] [Abstract][Full Text] [Related]
54. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. Pace KT; Ghiculete D; Harju M; Honey RJ; J Urol; 2005 Aug; 174(2):595-9. PubMed ID: 16006908 [TBL] [Abstract][Full Text] [Related]
55. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Wiesenthal JD; Ghiculete D; D'A Honey RJ; Pace KT Urol Res; 2010 Aug; 38(4):307-13. PubMed ID: 20625891 [TBL] [Abstract][Full Text] [Related]
56. Renal Stone Features Are More Important Than Renal Anatomy to Predict Shock Wave Lithotripsy Outcomes: Results from a Prospective Study with CT Follow-Up. Torricelli FCM; Monga M; Yamauchi FI; Marchini GS; Danilovic A; Vicentini FC; Batagello CA; Srougi M; Nahas WC; Mazzucchi E J Endourol; 2020 Jan; 34(1):63-67. PubMed ID: 31595801 [No Abstract] [Full Text] [Related]
58. Monitoring the coupling of the lithotripter therapy head with skin during routine shock wave lithotripsy with a surveillance camera. Bohris C; Roosen A; Dickmann M; Hocaoglu Y; Sandner S; Bader M; Stief CG; Walther S J Urol; 2012 Jan; 187(1):157-63. PubMed ID: 22100005 [TBL] [Abstract][Full Text] [Related]
59. Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Sokolov DL; Bailey MR; Crum LA Ultrasound Med Biol; 2003 Jul; 29(7):1045-52. PubMed ID: 12878251 [TBL] [Abstract][Full Text] [Related]
60. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]