These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 22935771)
1. FRET- and PET-based sensing in a single material: expanding the dynamic range of an ultra-sensitive nitroaromatic explosives assay. Wang Y; La A; Brückner C; Lei Y Chem Commun (Camb); 2012 Oct; 48(79):9903-5. PubMed ID: 22935771 [TBL] [Abstract][Full Text] [Related]
2. Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives. Sarkar K; Salinas Y; Campos I; Martínez-Máñez R; Marcos MD; Sancenón F; Amorós P Chempluschem; 2013 Jul; 78(7):684-694. PubMed ID: 31986617 [TBL] [Abstract][Full Text] [Related]
3. Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material. He N; Gao M; Shen D; Li H; Han Z; Zhao P Forensic Sci Int; 2019 Apr; 297():1-7. PubMed ID: 30739882 [TBL] [Abstract][Full Text] [Related]
4. Rapid detection of nitroaromatic and nitramine explosives on chromatographic paper and their reflectometric sensing on PVC tablets. Erçağ E; Uzer A; Eren S; Sağlam S; Filik H; Apak R Talanta; 2011 Sep; 85(4):2226-32. PubMed ID: 21872082 [TBL] [Abstract][Full Text] [Related]
5. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Stringer RC; Gangopadhyay S; Grant SA Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483 [TBL] [Abstract][Full Text] [Related]
6. Iptycene-based fluorescent sensors for nitroaromatics and TNT. Anzenbacher P; Mosca L; Palacios MA; Zyryanov GV; Koutnik P Chemistry; 2012 Oct; 18(40):12712-8. PubMed ID: 22930534 [TBL] [Abstract][Full Text] [Related]
7. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres. Turhan H; Tukenmez E; Karagoz B; Bicak N Talanta; 2018 Mar; 179():107-114. PubMed ID: 29310209 [TBL] [Abstract][Full Text] [Related]
8. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. Zhang W; Qiu LG; Yuan YP; Xie AJ; Shen YH; Zhu JF J Hazard Mater; 2012 Jun; 221-222():147-54. PubMed ID: 22560174 [TBL] [Abstract][Full Text] [Related]
9. Recent Advancements for the Recognization of Nitroaromatic Explosives Using Calixarene Based Fluorescent Probes. Desai V; Panchal M; Dey S; Panjwani F; Jain VK J Fluoresc; 2022 Jan; 32(1):67-79. PubMed ID: 34687396 [TBL] [Abstract][Full Text] [Related]
10. A portable fluorescence detector for fast ultra trace detection of explosive vapors. Xin Y; He G; Wang Q; Fang Y Rev Sci Instrum; 2011 Oct; 82(10):103102. PubMed ID: 22047275 [TBL] [Abstract][Full Text] [Related]
11. Selective detection of trace nitroaromatic, nitramine, and nitrate ester explosive residues using a three-step fluorimetric sensing process: a tandem turn-off, turn-on sensor. Sanchez JC; Toal SJ; Wang Z; Dugan RE; Trogler WC J Forensic Sci; 2007 Nov; 52(6):1308-13. PubMed ID: 17944906 [TBL] [Abstract][Full Text] [Related]
12. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity. Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204 [TBL] [Abstract][Full Text] [Related]
13. Chromo-fluorogenic detection of nitroaromatic explosives by using silica mesoporous supports gated with tetrathiafulvalene derivatives. Salinas Y; Solano MV; Sørensen RE; Larsen KR; Lycoops J; Jeppesen JO; Martínez-Máñez R; Sancenón F; Marcos MD; Amorós P; Guillem C Chemistry; 2014 Jan; 20(3):855-66. PubMed ID: 24318316 [TBL] [Abstract][Full Text] [Related]
14. A new poly(phthalazine ether sulfone ketone)-coated fiber for solid-phase microextraction to determine nitroaromatic explosives in aqueous samples. Guan W; Xu F; Liu W; Zhao J; Guan Y J Chromatogr A; 2007 Apr; 1147(1):59-65. PubMed ID: 17346721 [TBL] [Abstract][Full Text] [Related]
15. Trace detection of explosive particulates with a phosphole oxide. Shiraishi K; Sanji T; Tanaka M ACS Appl Mater Interfaces; 2009 Jul; 1(7):1379-82. PubMed ID: 20355938 [TBL] [Abstract][Full Text] [Related]
16. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives. Chen W; Zuckerman NB; Konopelski JP; Chen S Anal Chem; 2010 Jan; 82(2):461-5. PubMed ID: 20000846 [TBL] [Abstract][Full Text] [Related]
17. Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels. Kartha KK; Sandeep A; Praveen VK; Ajayaghosh A Chem Rec; 2015 Feb; 15(1):252-65. PubMed ID: 25351991 [TBL] [Abstract][Full Text] [Related]