These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Circadian surprise--it's not all about transcription. Doherty CJ; Kay SA Science; 2012 Oct; 338(6105):338-40. PubMed ID: 23087238 [No Abstract] [Full Text] [Related]
7. Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle. Mermet J; Yeung J; Naef F PLoS Genet; 2021 Feb; 17(2):e1009350. PubMed ID: 33524027 [TBL] [Abstract][Full Text] [Related]
8. A molecular mechanism for circadian clock negative feedback. Duong HA; Robles MS; Knutti D; Weitz CJ Science; 2011 Jun; 332(6036):1436-9. PubMed ID: 21680841 [TBL] [Abstract][Full Text] [Related]
9. Biochemical analysis of the canonical model for the mammalian circadian clock. Ye R; Selby CP; Ozturk N; Annayev Y; Sancar A J Biol Chem; 2011 Jul; 286(29):25891-902. PubMed ID: 21613214 [TBL] [Abstract][Full Text] [Related]
11. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Padmanabhan K; Robles MS; Westerling T; Weitz CJ Science; 2012 Aug; 337(6094):599-602. PubMed ID: 22767893 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. Rey G; Cesbron F; Rougemont J; Reinke H; Brunner M; Naef F PLoS Biol; 2011 Feb; 9(2):e1000595. PubMed ID: 21364973 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional regulatory logic of the diurnal cycle in the mouse liver. Sobel JA; Krier I; Andersin T; Raghav S; Canella D; Gilardi F; Kalantzi AS; Rey G; Weger B; Gachon F; Dal Peraro M; Hernandez N; Schibler U; Deplancke B; Naef F; PLoS Biol; 2017 Apr; 15(4):e2001069. PubMed ID: 28414715 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanism of the repressive phase of the mammalian circadian clock. Cao X; Yang Y; Selby CP; Liu Z; Sancar A Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443219 [TBL] [Abstract][Full Text] [Related]
15. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape. Qu M; Qu H; Jia Z; Kay SA Nat Commun; 2021 Nov; 12(1):6350. PubMed ID: 34732735 [TBL] [Abstract][Full Text] [Related]
16. Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals. Abe YO; Yoshitane H; Kim DW; Kawakami S; Koebis M; Nakao K; Aiba A; Kim JK; Fukada Y Nat Commun; 2022 Aug; 13(1):4652. PubMed ID: 35999195 [TBL] [Abstract][Full Text] [Related]
17. Distinct roles of DBHS family members in the circadian transcriptional feedback loop. Kowalska E; Ripperger JA; Muheim C; Maier B; Kurihara Y; Fox AH; Kramer A; Brown SA Mol Cell Biol; 2012 Nov; 32(22):4585-94. PubMed ID: 22966205 [TBL] [Abstract][Full Text] [Related]
18. Ubiquitin ligase TRAF2 attenuates the transcriptional activity of the core clock protein BMAL1 and affects the maximal Per1 mRNA level of the circadian clock in cells. Chen S; Yang J; Yang L; Zhang Y; Zhou L; Liu Q; Duan C; Mieres CA; Zhou G; Xu G FEBS J; 2018 Aug; 285(16):2987-3001. PubMed ID: 29935055 [TBL] [Abstract][Full Text] [Related]
19. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm. Gul S; Aydin C; Ozcan O; Gurkan B; Surme S; Baris I; Kavakli IH J Biol Chem; 2020 Dec; 295(50):17187-17199. PubMed ID: 33028638 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina. Liu X; Zhang Z; Ribelayga CP PLoS One; 2012; 7(11):e50602. PubMed ID: 23189207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]