These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22936779)

  • 21. Difference in the distribution pattern of substrate enzymes in the metabolic network of Escherichia coli, according to chaperonin requirement.
    Takemoto K; Niwa T; Taguchi H
    BMC Syst Biol; 2011 Jun; 5():98. PubMed ID: 21702926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome.
    Morgenthaler AB; Kinney WR; Ebmeier CC; Walsh CM; Snyder DJ; Cooper VS; Old WM; Copley SD
    Elife; 2019 Dec; 8():. PubMed ID: 31815667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional enzymes from reduced genomes - model proteins for simple primordial metabolism?
    Seelig B
    Mol Microbiol; 2017 Aug; 105(4):505-507. PubMed ID: 28665040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput FACS method for directed evolution of substrate specificity.
    Olsen MJ; Gam J; Iverson BL; Georgiou G
    Methods Mol Biol; 2003; 230():329-42. PubMed ID: 12824593
    [No Abstract]   [Full Text] [Related]  

  • 25. An enzyme-centric approach for modelling non-linear biological complexity.
    Yang CR
    BMC Syst Biol; 2008 Aug; 2():70. PubMed ID: 18671883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.
    Huthmacher C; Gille C; Holzhütter HG
    J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The evolution of control and distribution of adaptive mutations in a metabolic pathway.
    Wright KM; Rausher MD
    Genetics; 2010 Feb; 184(2):483-502. PubMed ID: 19966064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering specialized metabolic pathways--is there a room for enzyme improvements?
    Bar-Even A; Salah Tawfik D
    Curr Opin Biotechnol; 2013 Apr; 24(2):310-9. PubMed ID: 23102865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global properties of the metabolic map of Escherichia coli.
    Ouzounis CA; Karp PD
    Genome Res; 2000 Apr; 10(4):568-76. PubMed ID: 10779499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.
    Chiang RA; Sali A; Babbitt PC
    PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creation of new metabolic pathways or improvement of existing metabolic enzymes by in vivo evolution in Escherichia coli.
    Meynial-Salles I; Soucaille P
    Methods Mol Biol; 2012; 834():75-86. PubMed ID: 22144354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How to Recruit a Promiscuous Enzyme to Serve a New Function.
    Copley SD; Newton MS; Widney KA
    Biochemistry; 2023 Jan; 62(2):300-308. PubMed ID: 35729117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of Enzyme Kinetic Mechanisms.
    Ulusu NN
    J Mol Evol; 2015 Jun; 80(5-6):251-7. PubMed ID: 25987355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Analogy in Human Metabolism: Enzymes with Different Biological Roles or Functional Redundancy?
    Piergiorge RM; de Miranda AB; Guimarães AC; Catanho M
    Genome Biol Evol; 2017 Jun; 9(6):1624-1636. PubMed ID: 28854631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene connectivity and enzyme evolution in the human metabolic network.
    Dobon B; Montanucci L; Peretó J; Bertranpetit J; Laayouni H
    Biol Direct; 2019 Sep; 14(1):17. PubMed ID: 31481097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation.
    Cole KB; Dorit RL
    J Mol Biol; 1999 Oct; 292(4):931-44. PubMed ID: 10525416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzyme promiscuity: evolutionary and mechanistic aspects.
    Khersonsky O; Roodveldt C; Tawfik DS
    Curr Opin Chem Biol; 2006 Oct; 10(5):498-508. PubMed ID: 16939713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Principles of transcriptional regulation and evolution of the metabolic system in E. coli.
    Seshasayee AS; Fraser GM; Babu MM; Luscombe NM
    Genome Res; 2009 Jan; 19(1):79-91. PubMed ID: 18836036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.