These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22936843)

  • 21. Stopover departure decisions in songbirds: do long-distance migrants depart earlier and more independently of weather conditions than medium-distance migrants?
    Packmor F; Klinner T; Woodworth BK; Eikenaar C; Schmaljohann H
    Mov Ecol; 2020; 8():6. PubMed ID: 32047634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Projected changes in wind assistance under climate change for nocturnally migrating bird populations.
    La Sorte FA; Horton KG; Nilsson C; Dokter AM
    Glob Chang Biol; 2019 Feb; 25(2):589-601. PubMed ID: 30537359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of flow direction in high-flying insect and songbird migrants.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T; Reynolds AM
    Curr Biol; 2015 Aug; 25(17):R751-2. PubMed ID: 26325133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climatic variation in Africa and Europe has combined effects on timing of spring migration in a long-distance migrant Willow Warbler
    Remisiewicz M; Underhill LG
    PeerJ; 2020; 8():e8770. PubMed ID: 32211237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensation for wind drift during raptor migration improves with age through mortality selection.
    Sergio F; Barbosa JM; Tanferna A; Silva R; Blas J; Hiraldo F
    Nat Ecol Evol; 2022 Jul; 6(7):989-997. PubMed ID: 35680999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autumn migration direction of juvenile willow warblers (
    Zhao T; Ilieva M; Larson K; Lundberg M; Neto JM; Sokolovskis K; Åkesson S; Bensch S
    Mov Ecol; 2020; 8():22. PubMed ID: 32514357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seasonal migration of Helicoverpa armigera (Lepidoptera: Noctuidae) over the Bohai Sea.
    Feng H; Wu X; Wu B; Wu K
    J Econ Entomol; 2009 Feb; 102(1):95-104. PubMed ID: 19253623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seasonal changes in the altitudinal distribution of nocturnally migrating birds during autumn migration.
    La Sorte FA; Hochachka WM; Farnsworth A; Sheldon D; Van Doren BM; Fink D; Kelling S
    R Soc Open Sci; 2015 Dec; 2(12):150347. PubMed ID: 27019724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate in Africa sequentially shapes spring passage of Willow Warbler
    Remisiewicz M; Underhill LG
    PeerJ; 2022; 10():e12964. PubMed ID: 35198263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects.
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    Proc Biol Sci; 2010 Mar; 277(1682):765-72. PubMed ID: 19889697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Young frigatebirds learn how to compensate for wind drift.
    Wynn J; Collet J; Prudor A; Corbeau A; Padget O; Guilford T; Weimerskirch H
    Proc Biol Sci; 2020 Oct; 287(1937):20201970. PubMed ID: 33081617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds.
    Alerstam T; Chapman JW; Bäckman J; Smith AD; Karlsson H; Nilsson C; Reynolds DR; Klaassen RH; Hill JK
    Proc Biol Sci; 2011 Oct; 278(1721):3074-80. PubMed ID: 21389024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Days to visit an offshore island: effect of weather conditions on arrival fuel load and potential flight range for common blackbirds Turdus merula migrating over the North Sea.
    Kelsey NA; Hüppop O; Bairlein F
    Mov Ecol; 2021 Oct; 9(1):53. PubMed ID: 34674773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal detours by soaring migrants shaped by wind regimes along the East Atlantic Flyway.
    Vansteelant WM; Shamoun-Baranes J; van Manen W; van Diermen J; Bouten W
    J Anim Ecol; 2017 Mar; 86(2):179-191. PubMed ID: 27757959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compensation for wind drift prevails for a shorebird on a long-distance, transoceanic flight.
    Linscott JA; Navedo JG; Clements SJ; Loghry JP; Ruiz J; Ballard BM; Weegman MD; Senner NR
    Mov Ecol; 2022 Mar; 10(1):11. PubMed ID: 35255994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autumn fueling behavior in passerines in relation to migratory distance and daylength.
    Engert ER; Hellström M; Åkesson S
    Ecol Evol; 2023 Jan; 13(1):e9571. PubMed ID: 36694548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of the US Great Plains low-level jet in nocturnal migrant behavior.
    Wainwright CE; Stepanian PM; Horton KG
    Int J Biometeorol; 2016 Oct; 60(10):1531-1542. PubMed ID: 26872654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locust displacing winds in eastern Australia reassessed with observations from an insect monitoring radar.
    Hao Z; Drake VA; Sidhu L; Taylor JR
    Int J Biometeorol; 2017 Dec; 61(12):2073-2084. PubMed ID: 28717998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.