These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22936843)

  • 41. Wind estimation based on thermal soaring of birds.
    Weinzierl R; Bohrer G; Kranstauber B; Fiedler W; Wikelski M; Flack A
    Ecol Evol; 2016 Dec; 6(24):8706-8718. PubMed ID: 28035262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Locust displacing winds in eastern Australia reassessed with observations from an insect monitoring radar.
    Hao Z; Drake VA; Sidhu L; Taylor JR
    Int J Biometeorol; 2017 Dec; 61(12):2073-2084. PubMed ID: 28717998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. No apparent gain from continuing migration for more than 3000 kilometres: willow warblers breeding in Denmark winter across the entire northern Savannah as revealed by geolocators.
    Lerche-Jørgensen M; Willemoes M; Tøttrup AP; Snell KRS; Thorup K
    Mov Ecol; 2017; 5():17. PubMed ID: 28861271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators.
    Åkesson S; Klaassen R; Holmgren J; Fox JW; Hedenström A
    PLoS One; 2012; 7(7):e41195. PubMed ID: 22815968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    PLoS One; 2010 Dec; 5(12):e15758. PubMed ID: 21209956
    [TBL] [Abstract][Full Text] [Related]  

  • 47. European shags optimize their flight behavior according to wind conditions.
    Kogure Y; Sato K; Watanuki Y; Wanless S; Daunt F
    J Exp Biol; 2016 Feb; 219(Pt 3):311-8. PubMed ID: 26847559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diurnal migration patterns in willow warblers differ between the western and eastern flyways.
    Sokolovskis K; Caballero-Lopez V; Åkesson S; Lundberg M; Willemoes M; Zhao T; Bensch S
    Mov Ecol; 2023 Sep; 11(1):58. PubMed ID: 37735665
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimal stopover decisions under wind influence: the effects of correlated winds.
    Weber TP; Hedenström A
    J Theor Biol; 2000 Jul; 205(1):95-104. PubMed ID: 10860703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Migrating curlews on schedule: departure and arrival patterns of a long-distance migrant depend on time and breeding location rather than on wind conditions.
    Schwemmer P; Mercker M; Vanselow KH; Bocher P; Garthe S
    Mov Ecol; 2021 Mar; 9(1):9. PubMed ID: 33731224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stop early to travel fast: modelling risk-averse scheduling among nocturnally migrating birds.
    McLaren JD; Shamoun-Baranes J; Bouten W
    J Theor Biol; 2013 Jan; 316():90-8. PubMed ID: 23026762
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bet-hedging and the orientation of juvenile passerines in fall migration.
    Reilly JR; Reilly RJ
    J Anim Ecol; 2009 Sep; 78(5):990-1001. PubMed ID: 19572960
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptive drift and barrier-avoidance by a fly-forage migrant along a climate-driven flyway.
    Vansteelant WMG; Gangoso L; Bouten W; Viana DS; Figuerola J
    Mov Ecol; 2021 Jul; 9(1):37. PubMed ID: 34253264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Examining the role of wind in human illness due to pesticide drift in Washington state, 2000-2015.
    Kasner EJ; Prado JB; Yost MG; Fenske RA
    Environ Health; 2021 Mar; 20(1):26. PubMed ID: 33722241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Projected changes in prevailing winds for transatlantic migratory birds under global warming.
    La Sorte FA; Fink D
    J Anim Ecol; 2017 Mar; 86(2):273-284. PubMed ID: 27973732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Navigating north: how body mass and winds shape avian flight behaviours across a North American migratory flyway.
    Horton KG; Van Doren BM; La Sorte FA; Fink D; Sheldon D; Farnsworth A; Kelly JF
    Ecol Lett; 2018 Jul; 21(7):1055-1064. PubMed ID: 29736919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Where in the air? Aerial habitat use of nocturnally migrating birds.
    Horton KG; Van Doren BM; Stepanian PM; Farnsworth A; Kelly JF
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881761
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Juvenile Osprey Navigation during Trans-Oceanic Migration.
    Horton TW; Bierregaard RO; Zawar-Reza P; Holdaway RN; Sagar P
    PLoS One; 2014; 9(12):e114557. PubMed ID: 25493430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL; Wakefield ED; Phillips RA
    Mov Ecol; 2018; 6():3. PubMed ID: 29556395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.