These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 22936896)

  • 21. Agonistic behaviour and biogenic amines in shore crabs Carcinus maenas.
    Sneddon LU; Taylor AC; Huntingford FA; Watson DG
    J Exp Biol; 2000 Feb; 203(Pt 3):537-45. PubMed ID: 10637182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests.
    Szczuka A; Korczyńska J; Wnuk A; Symonowicz B; Gonzalez Szwacka A; Mazurkiewicz P; Kostowski W; Godzińska EJ
    Acta Neurobiol Exp (Wars); 2013; 73(4):495-520. PubMed ID: 24457641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of stimulus-driven versus goal-directed processes in fight and flight tendencies measured with motor evoked potentials induced by Transcranial Magnetic Stimulation.
    Moors A; Fini C; Everaert T; Bardi L; Bossuyt E; Kuppens P; Brass M
    PLoS One; 2019; 14(5):e0217266. PubMed ID: 31107906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heightened serotonin influences contest outcome and enhances expression of high-intensity aggressive behaviors.
    Bubak AN; Renner KJ; Swallow JG
    Behav Brain Res; 2014 Feb; 259():137-42. PubMed ID: 24211450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Octopaminergic system in the brain controls aggressive motivation in the ant, Formica japonica.
    Aonuma H; Watanabe T
    Acta Biol Hung; 2012; 63 Suppl 2():63-8. PubMed ID: 22776474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serotonin and aggressive motivation in crustaceans: altering the decision to retreat.
    Huber R; Smith K; Delago A; Isaksson K; Kravitz EA
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5939-42. PubMed ID: 9159179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling.
    Koon AC; Ashley J; Barria R; DasGupta S; Brain R; Waddell S; Alkema MJ; Budnik V
    Nat Neurosci; 2011 Feb; 14(2):190-9. PubMed ID: 21186359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of the probability of fighting in fallow deer (Dama dama) during the rut.
    Bartos L; Fricová B; Bartosová-Víchová J; Panamá J; Sustr P; Smídová E
    Aggress Behav; 2007; 33(1):7-13. PubMed ID: 17441001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogenic amines and activity levels alter the neural energetic response to aggressive social cues in the honey bee Apis mellifera.
    Rittschof CC; Vekaria HJ; Palmer JH; Sullivan PG
    J Neurosci Res; 2019 Aug; 97(8):991-1003. PubMed ID: 31090236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does signalling mitigate the cost of agonistic interactions? A test in a cricket that has lost its song.
    Logue DM; Abiola IO; Rains D; Bailey NW; Zuk M; Cade WH
    Proc Biol Sci; 2010 Aug; 277(1693):2571-5. PubMed ID: 20392727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in
    Churgin MA; McCloskey RJ; Peters E; Fang-Yen C
    J Neurosci; 2017 Aug; 37(33):7811-7823. PubMed ID: 28698386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogenic amines and aggression: experimental approaches in crustaceans.
    Huber R; Orzeszyna M; Pokorny N; Kravitz EA
    Brain Behav Evol; 1997; 50 Suppl 1():60-8. PubMed ID: 9217993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Post-Fight Respect Signals Valuations of Opponent's Fighting Performance.
    Pham MN; Barbaro N; Mogilski JK; Shackelford TK; Zeigler-Hill V
    Pers Soc Psychol Bull; 2017 Mar; 43(3):407-417. PubMed ID: 28903687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Octopamine in male aggression of Drosophila.
    Hoyer SC; Eckart A; Herrel A; Zars T; Fischer SA; Hardie SL; Heisenberg M
    Curr Biol; 2008 Feb; 18(3):159-67. PubMed ID: 18249112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Social context rather than behavioral output or winning modulates post-conflict testosterone responses in Japanese quail (Coturnix japonica).
    Hirschenhauser K; Wittek M; Johnston P; Möstl E
    Physiol Behav; 2008 Oct; 95(3):457-63. PubMed ID: 18675837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metamodulation of the biogenic amines: second-order modulation by steroid hormones and amine cocktails.
    Mesce KA
    Brain Behav Evol; 2002; 60(6):339-49. PubMed ID: 12563166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation associated aggression--a consequence of recovery from defeat in a territorial animal.
    Stevenson PA; Rillich J
    PLoS One; 2013; 8(9):e74965. PubMed ID: 24040368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A subset of octopaminergic neurons are important for Drosophila aggression.
    Zhou C; Rao Y; Rao Y
    Nat Neurosci; 2008 Sep; 11(9):1059-67. PubMed ID: 19160504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kleptoparasitic interactions modeling varying owner and intruder hunger awareness.
    Chowdhury N; Kentiba K; Mirajkar Y; Nasseri M; Rychtář J; Taylor D
    Theor Popul Biol; 2020 Dec; 136():31-40. PubMed ID: 33248144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes.
    Hsu Y; Earley RL; Wolf LL
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):33-74. PubMed ID: 16460581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.