These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22937221)

  • 1. Hydrogen bond nanoscale networks showing switchable transport performance.
    Long Y; Hui JF; Wang PP; Xiang GL; Xu B; Hu S; Zhu WC; Lü XQ; Zhuang J; Wang X
    Sci Rep; 2012; 2():612. PubMed ID: 22937221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Solvothermal Route Decorated on Different Substrates: Controllable Separation of an Oil/Water Mixture to a Stabilized Nanoscale Emulsion.
    Zhang W; Liu N; Cao Y; Chen Y; Xu L; Lin X; Feng L
    Adv Mater; 2015 Dec; 27(45):7349-55. PubMed ID: 26489016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic multifunctional nanochannels based on the asymmetric wettability of heterogeneous nanowire membranes.
    Zhang J; Yang Y; Zhang Z; Wang P; Wang X
    Adv Mater; 2014 Feb; 26(7):1071-5. PubMed ID: 24282127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional free-standing membrane from the self-assembly of ultralong MnO2 nanowires.
    Lan B; Yu L; Lin T; Cheng G; Sun M; Ye F; Sun Q; He J
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7458-64. PubMed ID: 23815464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux.
    Zhang W; Shi Z; Zhang F; Liu X; Jin J; Jiang L
    Adv Mater; 2013 Apr; 25(14):2071-6. PubMed ID: 23418068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions.
    Zhang W; Zhu Y; Liu X; Wang D; Li J; Jiang L; Jin J
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):856-60. PubMed ID: 24307602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Janus hybrid sustainable all-cellulose nanofiber sponge for oil-water separation.
    Agaba A; Marriam I; Tebyetekerwa M; Yuanhao W
    Int J Biol Macromol; 2021 Aug; 185():997-1004. PubMed ID: 34237368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.
    McClements DJ
    Adv Colloid Interface Sci; 2012 Jun; 174():1-30. PubMed ID: 22475330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of water-based aniline oligomer nanowires and their uses in low-cost fabrication of oxide nanotubes in aqueous phase.
    Leng W; Chen M; Zhou S; Wu L
    Chem Commun (Camb); 2013 Aug; 49(65):7225-7. PubMed ID: 23838750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic structure of water in a water/oil emulsion.
    Mancinelli R; Bruni F; Ricci MA; Imberti S
    J Chem Phys; 2013 May; 138(20):204503. PubMed ID: 23742489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superwetting nanowire membranes for selective absorption.
    Yuan J; Liu X; Akbulut O; Hu J; Suib SL; Kong J; Stellacci F
    Nat Nanotechnol; 2008 Jun; 3(6):332-6. PubMed ID: 18654542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Phenolic Network Covering on Zein Nanoparticles as a Regulator on the Oil/Water Interface.
    Wu D; Dai Y; Huang Y; Gao J; Liang H; Eid M; Deng Q; Zhou B
    J Agric Food Chem; 2020 Aug; 68(31):8471-8482. PubMed ID: 32663391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The orientation and charge of water at the hydrophobic oil droplet-water interface.
    Vácha R; Rick SW; Jungwirth P; de Beer AG; de Aguiar HB; Samson JS; Roke S
    J Am Chem Soc; 2011 Jul; 133(26):10204-10. PubMed ID: 21568343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors that affect Pickering emulsions stabilized by graphene oxide.
    He Y; Wu F; Sun X; Li R; Guo Y; Li C; Zhang L; Xing F; Wang W; Gao J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4843-55. PubMed ID: 23647467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds.
    Xu B; Liu C; Sun H; Wang X; Huang F
    J Agric Food Chem; 2019 Sep; 67(36):10155-10164. PubMed ID: 31433944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life.
    Cao Y; Xiao L; Wang W; Choi D; Nie Z; Yu J; Saraf LV; Yang Z; Liu J
    Adv Mater; 2011 Jul; 23(28):3155-60. PubMed ID: 21638349
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of fibrous filter properties on the oil-in-water-emulsion separation and filtration performance.
    Bansal S; von Arnim V; Stegmaier T; Planck H
    J Hazard Mater; 2011 Jun; 190(1-3):45-50. PubMed ID: 21459510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion.
    Zhu L; Chen M; Dong Y; Tang CY; Huang A; Li L
    Water Res; 2016 Mar; 90():277-285. PubMed ID: 26748205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Responsive Poly(dimethylsiloxane) Copolymer Decorated Magnetic Nanoparticles for Remotely Controlled Oil-in-Water Nanoemulsion Separation.
    Yang J; Loh XJ; Tan BH; Li Z
    Macromol Rapid Commun; 2019 Mar; 40(5):e1800013. PubMed ID: 29749058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.