BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22937222)

  • 1. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers.
    Cong HP; Ren XC; Wang P; Yu SH
    Sci Rep; 2012; 2():613. PubMed ID: 22937222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene in macroscopic order: liquid crystals and wet-spun fibers.
    Xu Z; Gao C
    Acc Chem Res; 2014 Apr; 47(4):1267-76. PubMed ID: 24555686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward high performance graphene fibers.
    Chen L; He Y; Chai S; Qiang H; Chen F; Fu Q
    Nanoscale; 2013 Jul; 5(13):5809-15. PubMed ID: 23689846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors.
    Fang B; Peng L; Xu Z; Gao C
    ACS Nano; 2015 May; 9(5):5214-22. PubMed ID: 25893965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry spinning approach to continuous graphene fibers with high toughness.
    Tian Q; Xu Z; Liu Y; Fang B; Peng L; Xi J; Li Z; Gao C
    Nanoscale; 2017 Aug; 9(34):12335-12342. PubMed ID: 28825752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Speed Blow Spinning of Neat Graphene Fibrous Materials.
    Liu S; Wang Y; Ming X; Xu Z; Liu Y; Gao C
    Nano Lett; 2021 Jun; 21(12):5116-5125. PubMed ID: 34126742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-based macroscopic assemblies and architectures: an emerging material system.
    Cong HP; Chen JF; Yu SH
    Chem Soc Rev; 2014 Nov; 43(21):7295-325. PubMed ID: 25065466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of 1T'-MoS
    Pan H; Lin J; Han X; Li Y; Meng X; Luo R; Broughton JJ; Imtiaz M; Chen Z; Wang D; Zhu S; Liu P; Guo Z
    Nanoscale; 2020 Mar; 12(11):6562-6570. PubMed ID: 32159565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Lithium Storage Properties of MOF Derivatives through a Wet-Spinning Assembled Fiber Strategy.
    Zhang L; Liu W; Shi W; Xu X; Mao J; Li P; Ye C; Yin R; Ye S; Liu X; Cao X; Gao C
    Chemistry; 2018 Sep; 24(52):13792-13799. PubMed ID: 29992663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers.
    Zhao Y; Jiang C; Hu C; Dong Z; Xue J; Meng Y; Zheng N; Chen P; Qu L
    ACS Nano; 2013 Mar; 7(3):2406-12. PubMed ID: 23414527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastrong Hybrid Fibers with Tunable Macromolecular Interfaces of Graphene Oxide and Carbon Nanotube for Multifunctional Applications.
    Kim SG; Heo SJ; Kim JG; Kim SO; Lee D; Kim M; Kim ND; Kim DY; Hwang JY; Chae HG; Ku BC
    Adv Sci (Weinh); 2022 Oct; 9(29):e2203008. PubMed ID: 35988149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators.
    Cheng H; Huang Y; Shi G; Jiang L; Qu L
    Acc Chem Res; 2017 Jul; 50(7):1663-1671. PubMed ID: 28657710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable assembly of continuous hollow graphene fibers with robust mechanical performance and multifunctionalities.
    Shi L; Dai H; Ni Q; Qi X; Liu W; He R; Chi Z; Fu Y
    Nanotechnology; 2022 Jan; 33(15):. PubMed ID: 34983037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Multifunctional Graphene Composites with Reshaping and Self-Healing Features via a Facile Biomineralization-Inspired Process.
    Lin S; Zhong Y; Zhao X; Sawada T; Li X; Lei W; Wang M; Serizawa T; Zhu H
    Adv Mater; 2018 Jul; ():e1803004. PubMed ID: 29968305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.
    Xu Z; Zhang Y; Li P; Gao C
    ACS Nano; 2012 Aug; 6(8):7103-13. PubMed ID: 22799441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling.
    Cruz-Silva R; Morelos-Gomez A; Kim HI; Jang HK; Tristan F; Vega-Diaz S; Rajukumar LP; ElĂ­as AL; Perea-Lopez N; Suhr J; Endo M; Terrones M
    ACS Nano; 2014 Jun; 8(6):5959-67. PubMed ID: 24796818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalently bridging graphene edges for improving mechanical and electrical properties of fibers.
    Ding L; Xu T; Zhang J; Ji J; Song Z; Zhang Y; Xu Y; Liu T; Liu Y; Zhang Z; Gong W; Wang Y; Shi Z; Ma R; Geng J; Ngo HT; Geng F; Liu Z
    Nat Commun; 2024 Jun; 15(1):4880. PubMed ID: 38849347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting storage properties of reduced graphene oxide fiber modified with MOFs-derived porous carbon through a wet-spinning fiber strategy.
    Yao M; Ji D; Chen Y; Wang Z; Dong J; Zhang Q; Ramakrishna S; Zhao X
    Nanotechnology; 2020 Sep; 31(39):395603. PubMed ID: 32531767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-Temperature, Highly Durable Ti
    Lee SH; Eom W; Shin H; Ambade RB; Bang JH; Kim HW; Han TH
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10434-10442. PubMed ID: 32040289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene nanoribbons as an advanced precursor for making carbon fiber.
    Xiang C; Behabtu N; Liu Y; Chae HG; Young CC; Genorio B; Tsentalovich DE; Zhang C; Kosynkin DV; Lomeda JR; Hwang CC; Kumar S; Pasquali M; Tour JM
    ACS Nano; 2013 Feb; 7(2):1628-37. PubMed ID: 23339339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.