These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study. Uddin MR; Sarowar MT; Chen X Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944 [TBL] [Abstract][Full Text] [Related]
7. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization. Zahedi Siani O; Zabetian Targhi M; Sojoodi M; Movahedin M Bioprocess Biosyst Eng; 2020 Sep; 43(9):1573-1586. PubMed ID: 32328730 [TBL] [Abstract][Full Text] [Related]
8. A microfluidic device for separating erythrocytes polluted by lead (II) from a continuous bloodstream flow. Wang MW Electrophoresis; 2012 Mar; 33(5):780-7. PubMed ID: 22522535 [TBL] [Abstract][Full Text] [Related]
9. Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe. Wood NR; Wolsiefer AI; Cohn RW; Williams SJ Electrophoresis; 2013 Jul; 34(13):1922-30. PubMed ID: 23592407 [TBL] [Abstract][Full Text] [Related]
10. Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Alazzam A; Stiharu I; Bhat R; Meguerditchian AN Electrophoresis; 2011 Jun; 32(11):1327-36. PubMed ID: 21500214 [TBL] [Abstract][Full Text] [Related]
11. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells. Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844 [TBL] [Abstract][Full Text] [Related]
12. AC Insulator-Based Dielectrophoretic Focusing of Particles and Cells in an "Infinite" Microchannel. Malekanfard A; Beladi-Behbahani S; Tzeng TR; Zhao H; Xuan X Anal Chem; 2021 Apr; 93(14):5947-5953. PubMed ID: 33793209 [TBL] [Abstract][Full Text] [Related]
13. Insulator-based dielectrophoretic focusing and trapping of particles in non-Newtonian fluids. Bentor J; Malekanfard A; Raihan MK; Wu S; Pan X; Song Y; Xuan X Electrophoresis; 2021 Nov; 42(21-22):2154-2161. PubMed ID: 33938011 [TBL] [Abstract][Full Text] [Related]
14. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications. Du E; Manoochehri S IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997 [TBL] [Abstract][Full Text] [Related]
15. Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells. Ye T; Li H; Lam KY Langmuir; 2011 Mar; 27(6):3188-97. PubMed ID: 21332176 [TBL] [Abstract][Full Text] [Related]
16. Flow-Field-Assisted Dielectrophoretic Microchips for High-Efficiency Sheathless Particle/Cell Separation with Dual Mode. Shen S; Yi Z; Li X; Xie S; Jin M; Zhou G; Yan Z; Shui L Anal Chem; 2021 Jun; 93(21):7606-7615. PubMed ID: 34003009 [TBL] [Abstract][Full Text] [Related]
17. Railing Nanoparticles Along Activated Tracks Towards Continuous-Flow Electrokinetic Enrichment from Blood Plasma Kushigbor SDE; Tang Z; Yobas L Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2249-2252. PubMed ID: 33018455 [TBL] [Abstract][Full Text] [Related]
18. Electrokinetic particle entry into microchannels. Zhu J; Hu G; Xuan X Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411 [TBL] [Abstract][Full Text] [Related]
20. A new design for efficient dielectrophoretic separation of cells in a microdevice. Jubery TZ; Dutta P Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]