These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22937529)

  • 21. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications.
    Xuan X
    Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microelectrofluidic probe for sequential cell separation and patterning.
    Brimmo AT; Menachery A; Qasaimeh MA
    Lab Chip; 2019 Dec; 19(24):4052-4063. PubMed ID: 31680130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels.
    Xuan X; Li D
    Electrophoresis; 2005 Sep; 26(18):3552-60. PubMed ID: 16110466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on the discrete dielectrophoresis for particle-cell separation.
    Techaumnat B; Panklang N; Wisitsoraat A; Suzuki Y
    Electrophoresis; 2020 Jun; 41(10-11):991-1001. PubMed ID: 32060955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel.
    Nerguizian V; Alazzam A; Roman D; Stiharu I; Burnier M
    Electrophoresis; 2012 Feb; 33(3):426-35. PubMed ID: 22287173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis.
    Bhattacharya S; Chao TC; Ariyasinghe N; Ruiz Y; Lake D; Ros R; Ros A
    Anal Bioanal Chem; 2014 Mar; 406(7):1855-65. PubMed ID: 24408303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid electrokinetics for separation, mixing, and concentration of colloidal particles.
    Sin MLY; Shimabukuro Y; Wong PK
    Nanotechnology; 2009 Apr; 20(16):165701. PubMed ID: 19420574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrokinetic focusing and filtration of cells in a serpentine microchannel.
    Church C; Zhu J; Wang G; Tzeng TR; Xuan X
    Biomicrofluidics; 2009 Nov; 3(4):44109. PubMed ID: 20216971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-equilibrium Inertial Separation Array for High-throughput, Large-volume Blood Fractionation.
    Mutlu BR; Smith KC; Edd JF; Nadar P; Dlamini M; Kapur R; Toner M
    Sci Rep; 2017 Aug; 7(1):9915. PubMed ID: 28855584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures.
    Jen CP; Chen TW
    Biomed Microdevices; 2009 Jun; 11(3):597-607. PubMed ID: 19104941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.
    Huang C; Santana SM; Liu H; Bander NH; Hawkins BG; Kirby BJ
    Electrophoresis; 2013 Nov; 34(20-21):2970-9. PubMed ID: 23925921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dielectrophoretic capture of low abundance cell population using thick electrodes.
    Marchalot J; Chateaux JF; Faivre M; Mertani HC; Ferrigno R; Deman AL
    Biomicrofluidics; 2015 Sep; 9(5):054104. PubMed ID: 26392836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A travelling wave dielectrophoretic pump for blood delivery.
    Lei U; Huang CW; Chen J; Yang CY; Lo YJ; Wo A; Chen CF; Fung TW
    Lab Chip; 2009 May; 9(10):1349-56. PubMed ID: 19417900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.
    Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
    Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P
    Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AC Electrokinetics of Physiological Fluids for Biomedical Applications.
    Lu Y; Liu T; Lamanda AC; Sin ML; Gau V; Liao JC; Wong PK
    J Lab Autom; 2015 Dec; 20(6):611-20. PubMed ID: 25487557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.