BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 22937667)

  • 41. Detecting the environmental impact of off-road vehicles on Rawdat Al Shams in central Saudi Arabia by remote sensing.
    Dewidar K; Thomas J; Bayoumi S
    Environ Monit Assess; 2016 Jul; 188(7):396. PubMed ID: 27270484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The G2 erosion model: An algorithm for month-time step assessments.
    Karydas CG; Panagos P
    Environ Res; 2018 Feb; 161():256-267. PubMed ID: 29169100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: a case study of the middle Heihe River basin, China.
    Jiang P; Cheng L; Li M; Zhao R; Duan Y
    Sci Total Environ; 2015 Feb; 506-507():259-71. PubMed ID: 25460959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data.
    Xiao Q; Tao J; Xiao Y; Qian F
    Environ Monit Assess; 2017 Sep; 189(10):493. PubMed ID: 28884302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].
    Liu Y; Wu BF; Zeng Y; Zhang L
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2581-9. PubMed ID: 24417118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Soil erosion in diverse agroecological regions of India: a comprehensive review of USLE-based modelling.
    Makhdumi W; Shwetha HR; Dwarakish GS
    Environ Monit Assess; 2023 Aug; 195(9):1112. PubMed ID: 37648877
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Priority setting for restoration in surrounding savannic areas of the Brazilian Pantanal based on soil loss risk and agrarian structure.
    Louzada RO; Bergier I; Diniz JMFS; Guerra A; Roque FO
    J Environ Manage; 2022 Dec; 323():116219. PubMed ID: 36108507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial and temporal characteristics of soil conservation service in the area of the upper and middle of the Yellow River, China.
    Zhu M; He W; Zhang Q; Xiong Y; Tan S; He H
    Heliyon; 2019 Dec; 5(12):e02985. PubMed ID: 31890952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of soil erosion hazard and its relation to land use land cover changes: Case study from alage watershed, central Rift Valley of Ethiopia.
    Taye G; Teklesilassie T; Teka D; Kassa H
    Heliyon; 2023 Aug; 9(8):e18648. PubMed ID: 37554786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization.
    Ozsoy G; Aksoy E
    Environ Monit Assess; 2015 Jul; 187(7):419. PubMed ID: 26059559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete.
    Karydas CG; Sekuloska T; Silleos GN
    Environ Monit Assess; 2009 Feb; 149(1-4):19-28. PubMed ID: 18320335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.
    Gordon CE; Price OF; Tasker EM
    Ecol Appl; 2017 Jul; 27(5):1618-1632. PubMed ID: 28390084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation.
    Kilpatrick AD; Lewis MM; Ostendorf B
    PLoS One; 2015; 10(11):e0142742. PubMed ID: 26565801
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Remote sensing based monitoring of vegetation dynamics and ecological restoration in Beijing mountainous area].
    Hu Y; Liu LY; Jia JH
    Ying Yong Sheng Tai Xue Bao; 2010 Nov; 21(11):2876-82. PubMed ID: 21361013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain.
    Fernández C; Vega JA
    Environ Res; 2018 Aug; 165():279-285. PubMed ID: 29734029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Seasonality of soil erosion under mediterranean conditions at the Alqueva Dam watershed.
    Ferreira V; Panagopoulos T
    Environ Manage; 2014 Jul; 54(1):67-83. PubMed ID: 24794193
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.
    Zhang D; Zhou G
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548168
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Soil moisture estimation method based on both ground-based remote sensing data and air temperature in a summer maize ecosystem.].
    Wang MZ; Zhou GS
    Ying Yong Sheng Tai Xue Bao; 2016 Jun; 27(6):1804-1810. PubMed ID: 29737686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands.
    Webb NP; Herrick JE; Duniway MC
    Ecol Appl; 2014; 24(6):1405-20. PubMed ID: 29160663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.